

### **Applications of Trigonometric Derivatives**

#### **Learning Objectives**

Compute derivatives of trigonometric functions in application problems

Compute derivatives of trigonometric functions in application problems

1. The number of daylight hours on a particular day of the year in Baltimore, MD is approximately given by the function  $H(t) = 12 - 2.7 \cos \left[ \frac{2\pi}{365} (t+11) \right]$ , where t is days since the beginning of the year (Jan 1: t = 1). Use a derivative to determine when daylight is longest, and when is it shortest.

# ⇒ KNEWTON I alta

| Days of the Year  |                 |                  |                  |  |
|-------------------|-----------------|------------------|------------------|--|
| Jan 1 = 1         | Feb 1 = 32      | Mar 1 = 60       | Apr 1 =91        |  |
| May 1 = 121       | June 1 = 152    | July 1 = 182     | August 1 = 213   |  |
| September 1 = 244 | October 1 = 274 | November 1 = 305 | December 1 = 335 |  |
|                   |                 |                  |                  |  |

## 

### **ANSWER KEY**

| 1. June 20-21 is the maximum (171.5 days); December 20 is the minimum (354 days) |  |  |  |  |
|----------------------------------------------------------------------------------|--|--|--|--|
|                                                                                  |  |  |  |  |
|                                                                                  |  |  |  |  |
|                                                                                  |  |  |  |  |
|                                                                                  |  |  |  |  |
|                                                                                  |  |  |  |  |
|                                                                                  |  |  |  |  |
|                                                                                  |  |  |  |  |
|                                                                                  |  |  |  |  |
|                                                                                  |  |  |  |  |
|                                                                                  |  |  |  |  |
|                                                                                  |  |  |  |  |
|                                                                                  |  |  |  |  |
|                                                                                  |  |  |  |  |
|                                                                                  |  |  |  |  |
|                                                                                  |  |  |  |  |
|                                                                                  |  |  |  |  |