

Euler's Method

Learning Objectives

• Use Euler's Method to approximate the solution of a differential equation

Use Euler's Method to approximate the solution of a differential equation

1. Consider the differential equation $\frac{dy}{dx} = x(y^2 - \sqrt{y}), y(1) = 2$. Estimate the value of y(2) using $\Delta x = 0.5$ Round your answer to two decimal places.

2. Consider the differential equation $\frac{dy}{dx} = 2x - 4y$, y(0) = 3. Estimate the value of y(1) using five steps. Round your answer to three decimal places.

- $y_{n+1} = y_n + f(x_n, y_n)\Delta x$ $\Delta x = \frac{b-a}{n}$ where *a* is the starting value of *x*, *b* is the stopping value of *x*, and *n* is the number of steps to get from a to b.

ANSWER KEY

1. $y(2) \approx 10.06$ 2. $y(1) \approx 0.376$

knewton**alta**.com | 2