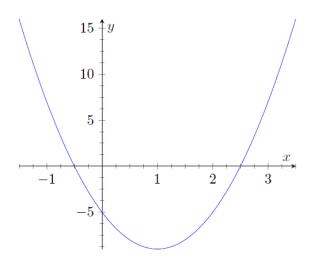

Quadratic Functions and the Parabola

Learning Objectives

- Determine the x- and y-intercepts of parabola from a graph
- Determine axis of symmetry and vertex of parabolas from a graph
- Find the direction a parabola opens and its axis of symmetry and vertex from the general form of its equation
- Find the domain and range of a quadratic function

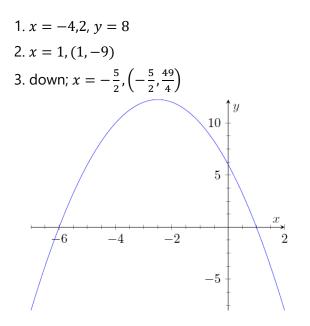

Determine the x- and y-intercepts of parabola from a graph

1. The graph of the function $f(x) = -x^2 - 2x + 8$ is shown below. Use the graph to determine the x- and y-intercepts. Confirm your results with the equation.

Determine axis of symmetry and vertex of parabolas from a graph

2. The graph of $f(x) = 4x^2 - 8x - 5$ is shown below. Use the graph to determine the vertex and axis of symmetry. Confirm your results from the equation.

Find the direction a parabola opens and its axis of symmetry and vertex from the general form of its equation


3. Determine whether the function $f(x) = 6 - 5x - x^2$ opens up or down. Find its axis of symmetry and vertex. Use that information to sketch the graph of the function.

Find the domain and range of a quadratic function

4. Find the domain and range of the function $f(x) = -\frac{1}{2}x^2 + 4x - 6$. [Hint: put the equation in vertex form.]

- Vertex form of the parabola: $f(x) = a(x h)^2 + k$ Complete the square: $(x + a)^2 = x^2 + 2ax + a^2$ Axis of symmetry: $x = -\frac{b}{2a}$ Vertex: $\left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right)$

ANSWER KEY

4. $f(x) = -\frac{1}{2}(x-4)^2 + 2$; D: all real numbers; R: $(-\infty, 2]$.

knewton**alta**.com | 4