Math 268, Homework #5, Spring 2012 Name

Instructions: Write your work up neatly and attach to this page. Record your final answers (only) *directly on this page*. Use exact values unless specifically asked to round.

- 1. On a given quiz a student who receives an A has a 70% chance of getting an A on the next quiz, and a 20% chance of getting a B and 10% for any other grade. A student who gets a B on a quiz has a 50% chance of getting a B, a 10% chance of getting a A, and 40% chance of getting some other grade. A student who gets a grade less than B, has a 20% chance of getting a B, and a 5% chance of getting an A.
 - a. Find the stochastic matrix that represents the scores in the class.
 - b. If on one quiz, 80% of the students scored an A, 10% scored a B, and 10% scored below a B. What is the likely distribution of scores should the teacher expect on the next quiz?
 - c. What is the long term distribution of scores in the class?
- 2. Find the steady state vector for the following stochastic matrices both algebraically and by calculator.
 - a. $\begin{bmatrix} .1 & .7 \\ .9 & .3 \end{bmatrix}$ b. $\begin{bmatrix} .6 & .2 & .04 \\ .25 & .5 & .01 \\ .15 & .3 & .95 \end{bmatrix}$
- 3. For each statement, indicate whether it's true or false. For the ones that are false, state the correct true statement.
 - a. A stochastic matrix has a unique equilibrium vector.
 - b. If $\vec{Ax} = \lambda \vec{x}$ for some vector \vec{x} , then λ is an eigenvalue of A.
 - c. A matrix is not invertible if and only if 0 is an eigenvalue of A.
 - d. If $\vec{v_1}$ and $\vec{v_2}$ are linearly independent eigenvectors, then they correspond to distinct eigenvalues.
 - e. A steady state vector for a stochastic matrix is actually an eigenvector.
 - f. The eigenvalues of a matrix are on its main diagonal.
 - g. An nxn matrix can have more than n eigenvalues.
 - h. The determinant of A is the product of the diagonal entries of A.
 - i. The elementary row operations of A do not change its determinant.
 - j. If λ +5 is a factor of the characteristic polynomial, then 5 is an eigenvalue of A.

4. Find the characteristic polynomial and all eigenvalues and eigenvectors for each matrix.

a.	8 3	2 3		
b.	$\begin{bmatrix} -4\\2 \end{bmatrix}$	3 1		
C.	3 2 1	0 1 0	0 4 4	
d.	$\begin{bmatrix} 5\\0\\0\\0\\0 \end{bmatrix}$	5 2 0 0	0 -3 3 0	2 6 2 5
e.	$\begin{bmatrix} 1\\ 1 \end{bmatrix}$	-2 3		
f.	$\begin{bmatrix} 0\\ -2 \end{bmatrix}$	5 2		
g.	$\begin{bmatrix} -3\\4 \end{bmatrix}$		-8 5	

- 5. In problem #4, e, f, g have complex eigenvalues. Use those complex eignenvalues to create a matrix P and C so that P is a similarity transformation and C is similar to the matrices in e, f and g.
- 6. In old-growth forests of Douglas fir, the spotted owl dines mainly on flying squirrels. Suppose the predator-prey matrix for these two populations is $A = \begin{bmatrix} .4 & .3 \\ -p & 1.2 \end{bmatrix}$. Show that if the predation parameter p is .325, both populations grow. Estimate the long-term growth rate and the eventual ratio of owls to flying squirrels. Repeat the problem with p=.104 and p=.855.
- 7. For each matrix below, classify the origin as an attractor, repeller or saddle point of the dynamical system $\overrightarrow{x_{k+1}} = A\overrightarrow{x_k}$. Find the direction of greatest attraction and repulsion. Plot the

trajectories of the system starting from the $\vec{x_0} = \begin{bmatrix} 5\\15 \end{bmatrix}$.

 a.
 $\begin{bmatrix} 1.7 & -.3 \\ -1.2 & .8 \end{bmatrix}$

 b.
 $\begin{bmatrix} .5 & .6 \\ -.3 & 1.4 \end{bmatrix}$

 c.
 $\begin{bmatrix} 1.7 & .6 \\ -.4 & .7 \end{bmatrix}$