Math 268, Homework #6, Spring 2012 Name

Instructions: Write your work up neatly and attach to this page. Record your final answers (only) *directly on this page*. Use exact values unless specifically asked to round.

1. In a certain forest, a feral cat colony preys on chipmunks according to the predator-prey model given by $A = \begin{bmatrix} .35 & .25 \\ -p & 1.25 \end{bmatrix}$.

- a. Suppose that the predation parameter p is given by 0.35, 0.5 and 0.7 respectively. Determine the long-term behavior in each case. (What is the ratio of cats to chipmunks in the long run?)
- b. For each of the cases above, find the eigenvalues and associated eigenvectors of the matrix and plot a trajectory for each value of p starting from the initial condition $\vec{x}_0 = \begin{bmatrix} 10\\15 \end{bmatrix}$, $\vec{y}_0 = \begin{bmatrix} 3\\1 \end{bmatrix}$, and

$$\vec{z}_0 = \begin{bmatrix} 2\\ 10 \end{bmatrix}$$

- c. Describe the behavior of the origin for each value of p. Is the origin an attractor, a repeller or a saddle point?
- 2. For each pair of vectors in i-iii, find the following:
 - a. $\vec{u} \cdot \vec{v}$
 - b. $\|\vec{u}\|$ and $\|\vec{v}\|$

c.
$$\frac{\vec{u}}{\|\vec{u}\|}$$
 and $\frac{\vec{v}}{\|\vec{v}\|}$

- d. $\|\vec{u}\|^2 + \|\vec{v}\|^2$
- e. $\|\vec{u} + \vec{v}\|^2$

f.
$$\frac{\vec{u}\cdot\vec{v}}{\vec{v}\cdot\vec{v}}\vec{v}$$

g. $\|\vec{u} - \vec{v}\|$

i.
$$\vec{u} = \begin{bmatrix} -1\\2 \end{bmatrix}, \vec{v} = \begin{bmatrix} 4\\6 \end{bmatrix}$$

ii. $\vec{u} = \begin{bmatrix} 12\\3\\-5 \end{bmatrix}, \vec{v} = \begin{bmatrix} 2\\-3\\3 \end{bmatrix}$
iii. $\vec{u} = \begin{bmatrix} 3\\2\\-5\\0 \end{bmatrix}, \vec{v} = \begin{bmatrix} -4\\1\\-2\\6 \end{bmatrix}$

- 3. Use the information in problem #2, for each pair of vectors in i-iii, to determine the following:
 - a. The distance between \vec{u} and \vec{v} .
 - b. Are the vectors \vec{u} and \vec{v} orthogonal?
 - c. What is the angle between \vec{u} and \vec{v} ?
 - d. Find unit vectors in the direction of \vec{u} and \vec{v} .
 - e. The orthogonal projection of \vec{u} in the direction of \vec{v} .
 - f. If \vec{u} and \vec{v} are orthogonal, call the subspace spanned by the vectors W and find an orthonormal basis for the subspace.
 - g. Find W^{\perp} .

4. Show that the vectors $\vec{u}_1 = \begin{bmatrix} 3 \\ -3 \\ 0 \end{bmatrix}$, $\vec{u}_2 = \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix}$, $\vec{u}_3 = \begin{bmatrix} 1 \\ 1 \\ 4 \end{bmatrix}$ form an orthogonal basis for \mathbb{R}^3 . Make this

basis an orthonormal basis, and then use that basis to find the representation of $\vec{x} = \begin{bmatrix} 5 \\ -3 \\ 1 \end{bmatrix}$ in that basis using the formula $\vec{x} = c_1 \vec{u}_1 + c_2 \vec{u}_2 + c_3 \vec{u}_3$ where $c_j = \frac{\vec{x} \cdot \vec{u}_j}{\vec{u}_j \cdot \vec{u}_j}$ (j = 1, 2, 3).

- 5. Separate $\vec{y} = \begin{bmatrix} 2 \\ 6 \end{bmatrix}$ into \vec{y}_{\parallel} and \vec{y}_{\perp} if \vec{y}_{\parallel} is in the direction of $\vec{u} = \begin{bmatrix} 7 \\ 1 \end{bmatrix}$.
- 6. For each statement, indicate whether it's true or false. For the ones that are false, state the correct true statement.
 - a. Not every linearly independent set in \mathbb{R}^n is an orthogonal set.
 - b. If \vec{y} is a linear combination of nonzero vectors from an orthogonal set, then the weights in the linear combination can be computed without row operations on a matrix.
 - c. If the vectors in an orthogonal set are normalized, then some of the new vectors may not be orthogonal.
 - d. If the columns of an mxn matrix A are orthonormal, then the linear mapping $\vec{x} \mapsto A\vec{x}$ preserves lengths.
 - e. An orthogonal matrix is invertible.
 - f. If \vec{x} is orthogonal to \vec{u}_1 and \vec{u}_2 and if W = Span{ \mathbf{u}_1 , \mathbf{u}_2 }, then \vec{x} must be in W^{\perp}.
 - g. If \vec{y} is in a subspace W, then the orthogonal projection of \vec{y} onto W is \vec{y} itself.
 - h. If the columns of an nxp matrix U are orthonormal, then $UU^T \vec{y}$ is the orthogonal projection of \vec{y} onto the column space of U.
 - i. In the Orthogonal Decomposition Theorem, each term in the formula $\vec{y}_{\parallel} = \sum_{i=1}^{p} \frac{\vec{y} \cdot \vec{u}_{i}}{\vec{u}_{i} \cdot \vec{u}_{i}}$ is itself an orthogonal projection of \vec{y} onto a subspace of W.
 - j. The best approximation to \vec{y} by elements of a subspace W is given by the vector $\vec{y} proj_W \vec{y}$.
 - k. The general least-squares problem is to find an \vec{x} that makes $A\vec{x}$ as close to \vec{b} as possible.
 - I. Any solution of $A^T A \vec{x} = A^T \vec{b}$ is a least-squares solution of $A \vec{x} = \vec{b}$.
 - m. If the columns of A are linearly independent, then the equation $A\vec{x} = \vec{b}$ has exactly one least-squares solution.
 - n. A least-squares solution of $A\vec{x} = \vec{b}$ is the point in the column space of A closest to \vec{b} .

7. Verify that the given set of vectors {u1,...,un} is orthonormal, and then write \vec{x} as a pair or vectors $\vec{x_{\parallel}}$ and $\vec{x_{\perp}}$, with W defined as the span of the specified vectors and $\vec{x_{\parallel}}$ in W. What is the best approximation to \vec{x} in W? What is the distance from the subspace to the point \vec{x} .

a.
$$\vec{u}_1 = \begin{bmatrix} 1\\2\\1\\1 \end{bmatrix}, \vec{u}_2 = \begin{bmatrix} -2\\1\\-1\\1 \end{bmatrix}, \vec{u}_3 = \begin{bmatrix} 1\\1\\-2\\-1 \end{bmatrix}, \vec{u}_4 = \begin{bmatrix} -1\\1\\1\\-2 \end{bmatrix}, W = Span\{\vec{u}_1, \vec{u}_2, \vec{u}_3\}, \vec{x} = \begin{bmatrix} 4\\5\\-3\\3 \end{bmatrix}$$

b.
$$\vec{u}_1 = \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \vec{u}_2 = \begin{bmatrix} -1\\1\\0 \end{bmatrix}, W = Span\{\vec{u}_1, \vec{u}_2\}, \vec{x} = \begin{bmatrix} -1\\4\\3 \end{bmatrix}$$

c.
$$\vec{u}_1 = \begin{bmatrix} 1\\1\\0\\-1 \end{bmatrix}, \vec{u}_2 = \begin{bmatrix} 1\\0\\1\\1 \end{bmatrix}, \vec{u}_3 = \begin{bmatrix} 0\\-1\\1\\-1 \\-1 \end{bmatrix}, W = Span\{\vec{u}_1, \vec{u}_2, \vec{u}_3\}, \vec{x} = \begin{bmatrix} 3\\4\\5\\6 \end{bmatrix}$$

8. Find the least-squares approximation for $A\vec{x} = \vec{b}$.

a.
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}, \vec{b} = \begin{bmatrix} 1 \\ 3 \\ 8 \\ 2 \end{bmatrix}$$

b. $A = \begin{bmatrix} 2 & 1 \\ -2 & 0 \\ 2 & 3 \end{bmatrix}, \vec{b} = \begin{bmatrix} -5 \\ 8 \\ 1 \end{bmatrix}$

- 9. Find the best-fit equation specified for the given set of data.
 - a. {(1,0), (2,1), (4,2), (5,3)}, $y = \beta_0 + \beta_1 x$
 - b. {(1,0), (2,1), (4,2), (5,3)}, $y = \beta_0 + \beta_1 x + \beta_2 x^2$
 - c. {(4,1.58), (6,2.08), (8,2.5), (10,2.8), (12,3.1), (14,3.4), (16,3.8), (18,4.32)}, $y = \beta_1 x + \beta_2 x^2 + \beta_3 x^3$