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G iven  tha tAand  Bare  nxnmat r i cesw i th  de tA  = -7  and  de t
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a) det (AB)
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) rhe equation Ax = 0 has only the tr ivial\---l free variable

lf an m x n matriix has a pivot in every row,
unique solution for each b in Rm.

lnterchanging three rows of an nx, *:")^
determinant.
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\u,  v,  w,xl  is l inearly independent,  then i , fr ,and i are not in R3.

lf A and B are m x:n matrices, then both AB

The pivot columns of a matrix are always l ineally dependent.

l f  det A is zero, thern two rows or two corumns of A are the same, or a row or acolumn is zero.

l f  A and B are row equivalent, then their n spaces are the same.

There are only two conditions a vector space must satisfy: it must be crosedunder addit ion and closed under mult ipl icationl

The change of basis matrix is constructed fr
rows of ps. 
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other justification for full credit.

answer. (5 points)
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2.  Given T:Ra -> R3 such

a. Find the standard
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Instructions: on this portion of the exam, you moy use a carcurator tcoperations. support your answers with work (reproduce the reduced
perform elementary matrix
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b. ls f onto R3 ? Justify your answer. (3 points)
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c. ls T one-to-one? Justify your answer. (3 points)
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a. Find a basis for the column space of A. (5 points)
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to justify your answer. (4 points)
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b. Find a basis
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5. Given the basis E =l l  _2t3 , t  _2t2 ,2 _ 5t  + t ,  ,3 _ t2 +7f j  for  p3.
basis. (10 points)

for the null  space of A. (7 points)

c. Determine if b =

- I ^ (o.-yuoAuff o$"'r fl 
o

LBf tn
-tzfsz
-zv/\1

S/rrb

IFJ": P;,

-f(;' da!- cl-cfL or,ts



-ltuhrA\AJ L b"(k nd'an T"' tr
cJl CB-' *-'ftt) = A-&[r\ = L

tq+1*podrlr-h P,

->(M B-,) (x*t

5r4n I n lwLt -/*o' uoe'Qtv":w-t

;L,t (6-'), A"* (4\ o, d'-P-t'b &s,t*

er^;fifrL'i dtj= /^l^'f =c> , 16o'1

c) o 
Lt trt] it'> +^^' tr'^-k

b. ,={lt etat}

^-Dt- c, ..rerl* *Poxu

7. Prove that the foilowing are vector spaces or show that they are n
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Given that d et A-t =+ if A is invertibre, use this fact and thedetA
that both A and B must be invert ible. [Hint: use mult ipl ication
what you know about nxn identity matrices.l  (10 points)
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