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Maximum Likelihood 
Functions 

 
 
The maximum likelihood function is a method of estimating the most likely value of a parameter for a 
probability distribution given a sample of outcomes from that distribution.  This handout will discuss in 
broad outlines the general method for constructing a maximum likelihood function and calculating the 
maximum likelihood estimate (MLE) from that function using calculus.  Then we will go through a couple 
of specific worked examples. 
 
In general terms, we consider the probability distribution 𝑓(𝑥, 𝜆) and collect some samples of data that 
obey the distribution function. For each outcome, we measure the value of 𝑥, with the parameter 𝜆 still 
unknown.  The maximum likelihood function is the product of these outcomes, i.e. 𝐿(𝑓) =
∏ 𝑓(𝑥𝑖, 𝜆)𝑛

𝑖=1 = ∏ 𝑓𝑖(𝜆)𝑛
𝑖=1 .  We will use this function to estimate the most likely value of the parameter 

𝜆.  But, let’s first construct the maximum likelihood function in a couple of specific examples. 
 
Example 1.  Construct the maximum likelihood function for the exponential distribution modeling the 
time between events in a Poisson process.  We take several observations and obtain the following wait-
times: 𝑥𝑖 = {5, 2, 1, 4, 2, 6, 3, 1, 4, 2}. 
 
For the first observation, we obtained 𝑥1 = 5.  We substitution this into the exponential distribution 

𝑓(𝑥, 𝜆) = 𝜆𝑒−𝜆𝑥 for 𝑥, obtaining 𝑓1(𝜆) = 𝜆𝑒−5𝜆.  The second observation was 𝑥2 = 2.  So we substitution 

that into the exponential distribution for 𝑥, obtaining 𝑓2 = 𝜆𝑒−2𝜆.  And so forth.  
 

𝑓3(𝜆) = 𝜆𝑒−𝜆, 𝑓4(𝜆) = 𝜆𝑒−4𝜆, 𝑓5(𝜆) = 𝜆𝑒−2𝜆, 𝑓6(𝜆) = 𝜆𝑒−6𝜆 

 𝑓7(𝜆) = 𝜆𝑒−3𝜆, 𝑓8(𝜆) = 𝜆𝑒−𝜆, 𝑓9(𝜆) = 𝜆𝑒−4𝜆, 𝑓10(𝜆) = 𝜆𝑒−2𝜆 
 

The maximum likelihood function is the product of these expressions: 𝐿(𝑓) = ∏ 𝑓𝑖(𝜆)10
𝑖=1 = 

 

𝐿(𝑓) = 𝜆𝑒−5𝜆 𝜆𝑒−2𝜆 𝜆𝑒−𝜆 𝜆𝑒−4𝜆 𝜆𝑒−2𝜆 𝜆𝑒−6𝜆 𝜆𝑒−3𝜆𝜆𝑒−𝜆𝜆𝑒−4𝜆 𝜆𝑒−2𝜆 
𝐿(𝑓) = 𝜆10𝑒−30𝜆 

 
Because this probability distribution contains exponentials, we convert a product to a sum in the 
exponent.  In this case, the exponential distribution maximum likelihood function becomes  
 

𝐿(𝑓) = ∏ 𝜆𝑒−𝑥𝑖𝜆

𝑛

𝑖=1

= 𝜆𝑛𝑒𝜆 ∑ 𝑥𝑖
𝑛
𝑖=1  

 
To build our maximum likelihood functions, it may be useful to review common probability distributions 
here. 
 
Common Distributions 

Discrete 

𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙: 𝑏(𝑥, 𝑛, 𝑝) = (
𝑛
𝑥

) 𝑝𝑥(1 − 𝑝)𝑛−𝑥, 𝑥 = 0, 1, 2, … 
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ℎ𝑦𝑝𝑒𝑟𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐: ℎ(𝑥, 𝑛, 𝑀, 𝑁) =
(

𝑀
𝑥

) (
𝑁 − 𝑀
𝑛 − 𝑥

)

(
𝑁
𝑛

)
 

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙: 𝑛𝑏(𝑥, 𝑟, 𝑝) = (
𝑥 + 𝑟 − 1

𝑟 − 1
) 𝑝𝑟(1 − 𝑝)𝑥 , 𝑥 = 0, 1, 2, … 

𝑃𝑜𝑖𝑠𝑠𝑜𝑛: 𝑝(𝑥, 𝜆) =
𝑒−𝜆𝜆𝑥

𝑥!
, 𝑥 = 0, 1, 2, … 

Continuous 

𝑢𝑛𝑖𝑓𝑜𝑟𝑚: 𝑓(𝑥, 𝐴, 𝐵) =
1

𝐵 − 𝐴
, 𝐴 ≤ 𝑥 ≤ 𝐵 

𝑛𝑜𝑟𝑚𝑎𝑙: 𝑓(𝑥, 𝜇, 𝜎) =
1

√2ð𝜎
𝑒

−
(𝑥−𝜇)2

2𝜎2  

𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙: 𝑓(𝑥, 𝜆) = 𝜆𝑒−𝜆𝑥, 𝑥 ≥ 0 

𝑔𝑎𝑚𝑚𝑎: 𝑓(𝑥, 𝛼, 𝛽) =
1

𝛽𝛼Γ(𝛼)
𝑥𝛼−1𝑒

−
𝑥
𝛽 

𝑊𝑒𝑖𝑏𝑢𝑙𝑙: 𝑓(𝑥, 𝛼, 𝛽) =
𝛼

𝛽𝛼
𝑥𝛼−1𝑒

−(
𝑥
𝛽

)
𝛼

 

𝑙𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙: 𝑓(𝑥, 𝜇, 𝜎) =
1

√2𝜋𝜎𝑥
𝑒

−
(𝑙𝑛𝑥−𝜇)2

2𝜎2 , 𝑥 ≥ 0 

𝑏𝑒𝑡𝑎: 𝑓(𝑥, 𝛼, 𝛽, 𝐴, 𝐵) =
1

𝐵 − 𝐴

(Γ(𝛼 + 𝛽))

Γ(𝛼)Γ(𝛽)
(

𝑥 − 𝐴

𝐵 − 𝐴
)

𝛼−1

(
𝐵 − 𝑥

𝐵 − 𝐴
)

𝛽−1

, 𝐴 ≤ 𝑥 ≤ 𝐵 

𝑆𝑡𝑢𝑑𝑒𝑛𝑡 − 𝑇: 𝑓(𝑥, 𝜈) =
Γ (

𝜈 + 1
2 )

√𝜈𝜋Γ (
𝜈
2)

(1 +
𝑥2

𝜈
)

−
𝜈+1

2

 

 
 
Some things to note about these distributions:  

 If discrete distributions have continuous parameters, it is often possible to treat the maximum 
likelihood functions derived from these as though they were continuous functions.   There are 
some notable exceptions to this, like the hypergeometric function. 

 We can also neglect any constant multipliers in these functions, since it won’t affect the outcome 
of where the best estimate is.  So I will often state the 𝐿(𝑓) without those constants. 

 It is possible to test for multiple parameters simultaneously. 
 For the gamma function, if no 𝛽 is specified, assume it is equal to 1.  The 𝜒2 distribution is based 

on the gamma distribution with 𝛽 = 2 and 𝛼 =
𝜈

2
. 

 
Example 2.  Let’s look at the binomial and negative binomial distributions.  They behave pretty much the 
same once we have collected the samples. 
 
Suppose that we have a Bernoulli random variable and we choose in advance to take 30 samples.  Perhaps 
it is a weighted coin that we wish to test, so we flip it 30 times and record the outcome.  After collecting 
the data, we find we have obtained the following sequence of heads and tails: 
HTTHHTTTHTHTTTTHTHTHHTTTTTHTTT.  This is 10 heads and 20 tails. 
 
But suppose instead that we took samples until we reached 20 tails and obtained the exact same sequence 
of heads and tails.  If we are seek to calculate the probability for tails, then call this 𝑝, and the probability 
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for heads, 1 − 𝑝, then each time we obtain a head multiply by (1 − 𝑝), and each time we get a tail, 
multiply by 𝑝.  Since each data point collected was done one at a time, the coefficient in front of each 

product is (
1
1

)  𝑜𝑟 (
1
0

) both of which are equal to 1.  Thus, our maximum likelihood function is both cases 

is 
 

𝐿(𝑓) = (1 − 𝑝)𝑝2(1 − 𝑝)2𝑝3(1 − 𝑝)𝑝(1 − 𝑝)𝑝4(1 − 𝑝)𝑝(1 − 𝑝)𝑝(1 − 𝑝)2𝑝5(1 − 𝑝)𝑝3 
𝐿(𝑓) = 𝑝20(1 − 𝑝)10 

 
Since the functions themselves are just a product of such outcomes, the most they could differ by is the 

coefficient in front ((
30
20

) 𝑝20(1 − 𝑝)10 for the binomial or (
29
19

) 𝑝20(1 − 𝑝)10  for the negative binomial) 

which will not affect our future calculation for 𝑝.  The difference here is only that the negative binomial 
demands that the last term is determined, since we stop counting at a particular success, so only the terms 
before that are actually free to be shuffled. 
 
Example 3. Suppose that you have a collection of 1000 samples that are classified as Type A and Type B 
and want to use a small sample to estimate the number of Type A items in the entire collection.  After 
collecting 20 samples, you obtain 8 samples of Type A.  In the distribution, we know the values of 𝑛, 𝑁, 𝑥.  
So we substitute into the hypergeometric distribution.  Because this distribution is derived from multiple 
products, we don’t need to create the Π function here as we do for continuous distributions. 
 

𝐿(𝑓) =
(

𝑀
8

) (
1000 − 𝑀

20 − 8
)

(
1000

20
)

=
(

𝑀
8

) (
1000 − 𝑀

12
)

(
1000

20
)

 

 

Or, we can neglect the rather large constant in the denominator and use 𝐿(𝑓) = (
𝑀
8

) (
1000 − 𝑀

12
). 

 
Example 4.  Let’s consider a case of a normal distribution.  Suppose that we wish to know the heights of 
male students in a particular department on campus.  So 15 students are selected and their heights are 
measured.  The value for 𝑥𝑖 are obtained to be {69, 72, 75, 65, 66, 68, 70, 71, 73, 66, 68, 71, 69, 69, 63} 
measured in inches.  As we did in Example 1, each measurement is taken from a normal distribution, and 

we use this value for 𝑥 in the function.  𝑥1 = 69 gives us =𝑓1(𝜇, 𝜎) =
1

√2𝜋𝜎
𝑒

−
(69−𝜇)2

2𝜎2 .  The second value 

𝑥2 = 72 gives us 𝑓2(𝜇, 𝜎) =
1

√2𝜋𝜎
𝑒

−
(72−𝜇)2

2𝜎2 , and so forth.  Thus the maximum likelihood function is 

 

𝐿(𝑓) = ∏ 𝑓𝑖(𝜇, 𝜎)

15

𝑖=1

= 

 

1

√2𝜋𝜎
𝑒

−
(69−𝜇)2

2𝜎2
1

√2𝜋𝜎
𝑒

−
(72−𝜇)2

2𝜎2
1

√2𝜋𝜎
𝑒

−
(75−𝜇)2

2𝜎2
1

√2𝜋𝜎
𝑒

−
(65−𝜇)2

2𝜎2
1

√2𝜋𝜎
𝑒

−
(66−𝜇)2

2𝜎2
1

√2𝜋𝜎
𝑒

−
(68−𝜇)2

2𝜎2

∙
1

√2𝜋𝜎
𝑒

−
(70−𝜇)2

2𝜎2
1

√2𝜋𝜎
𝑒

−
(71−𝜇)2

2𝜎2
1

√2𝜋𝜎
𝑒

−
(73−𝜇)2

2𝜎2
1

√2𝜋𝜎
𝑒

−
(66−𝜇)2

2𝜎2
1

√2𝜋𝜎
𝑒

−
(68−𝜇)2

2𝜎2
1

√2𝜋𝜎
𝑒

−
(71−𝜇)2

2𝜎2

∙
1

√2𝜋𝜎
𝑒

−
(69−𝜇)2

2𝜎2
1

√2𝜋𝜎
𝑒

−
(69−𝜇)2

2𝜎2
1

√2𝜋𝜎
𝑒

−
(63−𝜇)2

2𝜎2 = 



Betsy McCall  Page 4 of 7 
 

𝐿(𝑓) =
1

(2𝜋)
15
2 𝜎15

𝑒
−

1
2𝜎2 ∑ (𝑥𝑖−𝜇)215

𝑖=1 = 

1

(2𝜋)15/2𝜎15
𝑒

−
1

2𝜎2[3(69−𝜇)2+(72−𝜇)2+(75−𝜇)2+(65−𝜇)2+2(66−𝜇)2+2(68−𝜇)2+(70−𝜇)2+2(71−𝜇)2+(73−𝜇)2+(63−𝜇)2]
 

 
Practice Problems. 

1. For each of the following situations, find the maximum likelihood function. 
a. You find a die at your friend’s house and think that it’s coming up 4 entirely too frequently to 

be fair.  You suspect it is weighted.  To test this, you roll the die 25 times and obtain the 
following sequence of rolls: {4, 5, 2, 3, 4, 4, 1, 6, 4, 2, 3, 5, 4, 2, 6, 1, 4, 4, 1, 4, 2, 3, 5, 1, 6}.  Use 
this information to find the maximum likelihood function to estimate the value of 𝑝= 
probability of obtaining a 4. 

b. Suppose that you have 35 items in a collection, some of which are fake and some of which 
are genuine.  You want to estimate the probability of fake items by taking a small sample.  You 
test 8 items and find that 6 are genuine and 2 are fake.  Use the hypergeometric distribution 
to obtain the maximum likelihood function to estimate the value of M. 

c. The number of customers that arrive at a certain drive-through between 2 and 3 p.m. each 
day can be modeled as a Poisson random variable.  Suppose that you want to estimate the 
parameter for the Poisson distribution that applies to a new location, so you record the 
number of customers for that hour for a week.  Your 𝑥𝑖 values are {10, 15, 18, 22, 19, 16, 12}.  
Find the maximum likelihood function needed to estimate the parameter 𝜆. 

d. Suppose that SAT scores are distributed normally, and you’d like to calculate the mean and 
standard deviation upon which they are based.  You obtain a sample of 10 scores for the 
quantitative section given by {510, 580, 430, 710, 220, 620, 550, 490, 700, 330}.  Find the 
maximum likelihood function for 𝜇, 𝜎. 

e. The wait-times for a Poisson process are modeled by the exponential distribution.  
Observations of the wait-times yield times of {22, 34, 16, 25, 29, 45, 32, 11, 27}.  Use this 
information to find the maximum likelihood function for this situation. 

f. Body sizes are measured for a certain species of reptile and they find body lengths to be 
{8, 4, 12, 11, 9, 10, 9, 8, 7, 6, 9} centimeters for a sample of specimens.  Use the lognormal 
distribution to find the maximum likelihood function for this situation. 

 
Once we obtain the maximum likelihood function 𝐿(𝑓), we then wish to use it to estimate the 
parameter(s).  Since we are finding a maximum, we will take the derivative of continuous functions and 
set the derivative equal to zero (excluding any values that must be excluded, i.e. zeros are often 
disallowed, negative values, etc.)  For functions like the hypergeometric, we can model them numerically 
with Excel to obtain the most likely values for the sought-after parameter. 
 
Take the derivative of the general case is inconvenient at best.  To take the derivative of many products, 
as in 𝐿(𝑓) = ∏ 𝑓𝑖(𝜆)𝑛

𝑖=1 , we would need to apply logarithmic differentiation to obtain the derivative.  By 

taking the natural log of both sides: ln(𝐿(𝑓)) = ln(∏ 𝑓𝑖(𝜆)𝑛
𝑖=1 ) = ∑ ln(𝑓𝑖(𝜆))𝑛

𝑖=1 .  Taking the derivative 

of the sum is considerably easier in the most general case since we can do it term by term without needing 
to know the exact number of terms, and maximizing the log function yields the same results as maximizing 
the original function.  However, when we are not trying to prove the most general case and have specific 
data, logarithmic differentiation is almost never needed.  As long as algebra combines things nicely, we 
usually just have a simple product rule with maybe two terms to work with. 
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Example 5. In Example 1, we obtained the maximum likelihood function 𝐿(𝑓) = 𝜆10𝑒−30𝜆.  The derivative 

of this with respect to 𝜆 is 
𝑑

𝑑𝜆
[𝜆10𝑒−30𝜆] = 10𝜆9𝑒−30𝜆 − 30𝜆10𝑒−30𝜆 = 0.  If we factor out the common 

terms, we obtain 10𝜆9𝑒−30𝜆[1 − 3𝜆] = 0.  We can’t use 𝜆 = 0, nor can the exponential piece be zero 
either, so we solve the remaining factor to obtain 
the maximum likelihood estimate (or MLE).  1 −

3𝜆 = 0 → �̂� =
1

3
.  And this makes sense since in 

the exponential distribution, the mean is 
1

𝜆
, and 

if we consider the data presented in Example 1, 
the mean does turn out to be 3.  We can also see 
this is the appropriate value from looking at the 
graph of the function.  The y-scale is extremely 
small.  If trying to obtain this graph for yourself, 
you’ll need to keep reducing the y-scale of the 
graph by 10s or 100s until it looks like more than 
a straight line. 
 
 
 
Example 6.  A similar procedure can be used to obtain the estimate for 𝑝 in Example 2.  The maximum 
likelihood function for that example is 𝐿(𝑓) = 𝑝20(1 − 𝑝)10.  If we take the derivative with respect to 𝑝, 

we obtain 
𝑑

𝑑𝑝
[𝑝20(1 − 𝑝)10] = 20𝑝19(1 − 𝑝)10 − 10𝑝20(1 − 𝑝)9 = 0.  Factoring out the common terms 

we get 10𝑝19(1 − 𝑝)9[2(1 − 𝑝) − 𝑝] = 0.  Since we can’t use 0 or 1 as possible solutions, we solve for 

the remaining factor.  2(1 − 𝑝) − 𝑝 = 2 − 3𝑝 = 0 or �̂� =
2

3
.  We can see the peek on the attached graph 

as well. 
 
 
Example 7. In Example 3, we obtained the 
maximum likelihood function 𝐿(𝑓) =

(
𝑀
8

) (
1000 − 𝑀

12
).  Because this function is 

discrete (the combination formulas depend 
on factorials, which are not continuous, and 
which we cannot take the derivative of), we 
will need to do this one numerically.  Note 
that initially M was restricted to values 
between 0 and 1000 (the population size).  
We’ve restricted the values now to a 
minimum of 8, and a maximum of 988 (since 
we know 12 of them at least are not of the 
correct type).  Once we set up the formula in 
Excel, we can calculate all these values if we 
wish.  If you find the values to be too large to 

work with, feel free to scale them, including using the original denominator. 
 
The relevant section of the Excel calculation is this section of the table: 
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397 398 399 400 401 402 403 404 405 

0.181464 0.181502 0.181523 0.181529 0.18152 0.181495 0.181455 0.1814 0.18133 

 
 
The bolded value for 
𝑀 = 400 is where the 
most likely value of 

the function, so �̂� =
400 for the described 
situation. 
 
Shown here is also the 
distribution graphed, 
and you can see the 
peek on the graph 
right around 400. 
 
 
 
 
 
Example 8.  In Example 4, we obtained the maximum likelihood function for the normal distribution  

𝐿(𝑓) =
1

(2𝜋)
15
2 𝜎15

𝑒
−

1

2𝜎2 ∑ (𝑥𝑖−𝜇)215
𝑖=1 .  In this case, it will be a bit easier to work with this slightly more general 

version of the formula.  It will allow us to do just one chain rule on the sum, rather than on multiple terms.  
It will also have the added benefit of seeing how we obtain the formulas for 𝜇 and 𝜎 more generally.  
However, since there are two parameters, we will have to take two partial derivatives. 
 

Thus 
𝜕𝐿

𝜕𝜇
=

1

(2𝜋)
15
2 𝜎15

𝑒
−

1

2𝜎2 ∑ (𝑥𝑖−𝜇)215
𝑖=1 (−

2

2𝜎2
∑ (𝑥𝑖 − 𝜇)115

𝑖=1 ) = 0, and 
𝜕𝐿

𝜕𝜎
=

−15

(2𝜋)
15
2 𝜎16

𝑒
−

1

2𝜎2 ∑ (𝑥𝑖−𝜇)215
𝑖=1 +

1

(2𝜋)
15
2 𝜎15

𝑒
−

1

2𝜎2 ∑ (𝑥𝑖−𝜇)215
𝑖=1 (

2

2𝜎3
∑ (𝑥𝑖 − 𝜇)215

𝑖=1 ) = 0.  In the derivative for 𝜇, the initial constant can’t be 

zero, and the exponential can’t be zero, so that leaves us with −
2

2𝜎2
∑ (𝑥𝑖 − 𝜇)115

𝑖=1 = 0, which essentially 

leaves us with ∑ (𝑥𝑖 − 𝜇)15
𝑖=1 = 0.  But if we solve this we obtain ∑ 𝑥𝑖

15
𝑖=1 = ∑ 𝜇15

𝑖=1 = 15𝜇 or �̂� =
1

15
∑ 𝑥𝑖

15
𝑖=1 .  Which is the formula for the mean we were expecting.  In this case ∑ 𝑥𝑖

15
𝑖=1 = 967, giving us 

�̂� =
967

15
≈ 64.47. 

 
For the derivative with respect to 𝜎, we can pull out the exponential piece and reduce a bit: 

𝑒
−

1

2𝜎2 ∑ (𝑥𝑖−𝜇)215
𝑖=1 (

−15

(2𝜋)
15
2 𝜎16

+
1

(2𝜋)
15
2 𝜎15

∙
1

𝜎3
∑ (𝑥𝑖 − 𝜇)215

𝑖=1 ) = 

1

(2𝜋)
15
2 𝜎16

𝑒
−

1
2𝜎2 ∑ (𝑥𝑖−𝜇)215

𝑖=1 (−15 +
1

𝜎2
∑(𝑥𝑖 − 𝜇)2

15

𝑖=1

) = 0 
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This leaves us with (−15 +
1

𝜎2
∑ (𝑥𝑖 − 𝜇)215

𝑖=1 ) = 0 or if we solve for 𝜎2 =
∑ (𝑥𝑖−𝜇)215

𝑖=1

15
.  This is the same 

formula we use for the population (rather than the sample) standard deviation.  Based on this, our best 
MLE for 𝜎 is �̂� ≈ 3.0768. 
 
You’ll notice this is not the same estimate obtained by other methods of estimation (such as the unbiased 
estimator method).  When more than one method of estimation is available and one obtains different 
formulas, it’s only through experience that statisticians have determined which one works best.  As the 
sample size gets larger, the smaller the difference, and the less it matters which is used. 
 
Practice Problems. 

2. For each of the scenarios in Problem #1, calculate the maximum likelihood estimate (MLE) for 
each problem.  If there are multiple parameters in the problem, find an estimate for each. 

3. This method applies to any probability distribution, not just the standard one.  For each of the 
problems below, find the maximum likelihood function for the distribution and included data set, 
and then use that to find the MLE for any parameters. 

a. Consider the probability distribution 𝑓(𝑥, 𝛼) = 𝛼2𝑥𝑒−𝛼𝑥, 𝑥 ≥ 0.  A collection of samples 
were obtained from this distribution and found to be 𝑥𝑖 =
{1, 1.14, 0.6, 0.5, 1.1, 0.2, 0.3, 0.2, 0.9}.  Find the maximum likelihood function and use 
this to approximate the MLE for 𝛼. 

b. A collection of samples from the probability distribution 𝑓(𝑥, 𝛼) =
2√𝛼

𝜋(1+𝛼𝑥2)
, 𝑥 ≥ 0 were 

obtained and found to be 𝑥𝑖 = {0.1, 0.5, 0.6, 0.9, 1, 1.4, 1.7, 2.1, 3.2, 5.6}.  Use this 
information to find the maximum likelihood function and the MLE for 𝛼. 

c. A certain class of objects is found to obey the probability distribution 𝑓(𝑥, 𝛼, 𝛽) =
4𝛼√𝛽

𝜋(𝛼2+𝛽𝑥4)
, 𝑥 ≥ 0.  A collection of samples is obtained and found to be 𝑥𝑖 =

{1, 4, 5, 5, 7, 8, 10, 13}.  Find the maximum likelihood function for this data and use it to 
estimate the values of 𝛼 and 𝛽. 

 
 
 


