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Systems of Linear ODEs 
 
 
Systems of ordinary differential equations can be solved in much the same way as discrete dynamical 
systems if the differential equations are linear.  We will focus here on the case with two variables only, 
but these procedures can be extended to higher order linear systems (with more variables, or by means 
of a substitution, derivatives of a higher order).  This handout will focus primarily on solving the linear 
system, the form of solutions, and the behaviour of the origin. 
 

I. Solving a linear ordinary differential equation in one variable. 
 

A linear ODE (ordinary differential equation) in one variable has the general form 𝑦′ = 𝑘𝑦.  To solve this 
system, we can perform some algebra to obtain a solution.  The technique is called separation of 
variables: first isolate all the y terms on one side, and any terms without y on the other.  Then integrate 

both sides.  To do this algebra, we usually write 𝑦′ =
𝑑𝑦

𝑑𝑡
 to make the operation more explicit. 

 
𝑑𝑦

𝑑𝑡
= 𝑘𝑦 

 
Divide by y and multiply by 𝑑𝑡 gives: 
 

𝑑𝑦

𝑦
= 𝑘𝑑𝑡 

 
Then integrate both sides with respect to the appropriate variable. 
 

∫
1

𝑦
𝑑𝑦 = ∫𝑘 𝑑𝑡 

 
ln|𝑦| = 𝑘𝑡 + 𝐶 

 

𝑦 = 𝑒𝑘𝑡+𝐶  
 
A little bit of algebra can rearrange this into a more familiar form. 
 

𝑦 = 𝑒𝑘𝑡𝑒𝐶 
 
Let 𝑒𝐶 = 𝐴 to obtain: 
 

𝑦 = 𝐴𝑒𝑘𝑡 
 
Where A is some unknown constant to be determined by any initial conditions that might be provided.  
And we can do a quit test to show that this does satisfy the original differential equation. 
 

𝑦′ = 𝐴𝑒𝑘𝑡 ∙ 𝑘 by the chain rule, and since 𝑦 = 𝐴𝑒𝑘𝑡, this can be rewritten as 𝑦′ = 𝑘𝑦. 
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When we go to systems of linear ODEs rather than just the one, it would be great if we could obtain a 
solution to the equation �⃗�′ = 𝐴�⃗�, with A being some 𝑛 × 𝑛 matrix, by making a similar assumption 

about the form of the solution, namely that it’s something like of �⃗� = 𝑒𝐴𝑐, with 𝑐 a constant vector to 
be determined by initial conditions. We can’t obtain the solution by integrating as we did before 
because we can’t divide by vectors or matrices, and it turns out this form of the solution does work, but 
before we do that: what the heck is 𝑒𝐴 anyway?    
 

II. Raising 𝒆 to a matrix power. 
 
To define 𝑒𝐴, the matrix A must be defined for all whole number powers of A, which is to say, it must be 
square. 
 

Since 𝑒𝑥 = ∑
𝑥𝑛

𝑛!
∞
𝑛=0 , we can similarly define   

 

𝑒𝐴 = ∑
𝐴𝑛

𝑛!

∞

𝑛=0

= 𝐼 + 𝐴 +
𝐴2

2
+

𝐴3

6
+

𝐴4

24
+ ⋯ 

 
This expression is defined for all powers of A, with 𝐴0 = 𝐼. 
 
If A is some general matrix, this can be very hard to compute by hand, but if A is diagonalizable, it 

becomes much easier.  Suppose A is already diagonal, then in the 2 × 2 case, if 𝐴 = [
𝑎 0
0 𝑑

], then 𝐴𝑛 =

[
𝑎𝑛 0
0 𝑑𝑛], and so 

 

𝑒𝐴 =  𝐼 + 𝐴 +
𝐴2

2
+

𝐴3

6
+

𝐴4

24
+ ⋯ 

 

= [
1 0
0 1

] + [
𝑎 0
0 𝑑

] +
1

2
[𝑎

2 0
0 𝑑2] +

1

6
[𝑎

3 0
0 𝑑3] +

1

24
[𝑎

4 0
0 𝑑4] + ⋯ 

 
 
Adding corresponding entries gives us 
 

[
 
 
 1 + 𝑎 +

𝑎2

2
+

𝑎3

6
+

𝑎4

24
+ ⋯ 0

0 1 + 𝑑 +
𝑑2

2
+

𝑑3

6
+

𝑑4

24
+ ⋯]

 
 
 

=

[
 
 
 
 
 ∑

𝑎𝑛

𝑛!

∞

𝑛=0

0

0 ∑
𝑑𝑛

𝑛!

∞

𝑛=0 ]
 
 
 
 
 

= [
𝑒𝑎 0
0 𝑒𝑑] 

 
So, it just raises the diagonal entries to be powers of 𝑒. 
 
If the matrix A is not diagonal, but can be diagonalized, i.e. 𝐴 = 𝑃𝐷𝑃−1, then we can find the matrix 
𝑒𝐴 = 𝑃𝑒𝐷𝑃−1, which follows from some simple matrix properties. 
 



P a g e  | 3 

Betsy McCall 

In the examples we’ll be working with, all the matrices will be diagonalizable on the set of Complex 
numbers. 
 
It’s because of this property of diagonalization that we will need to find the eigenvalues and 
eigenvectors of the A matrix that defines our system of differential equations. 
 

III. Solving for the general solution for a system of linear ODEs. 
 
Consider the set of linear ODEs in two variables: 
 

𝑑𝑥1

𝑑𝑡
= 3𝑥1 − 2𝑥2 

𝑑𝑥2

𝑑𝑡
= 2𝑥1 − 2𝑥2 

 

If �⃗� = [
𝑥1

𝑥2
] we can rewrite this system as  

𝑑

𝑑𝑡
[
𝑥1

𝑥2
] = [

3 −2
2 −2

] [
𝑥1

𝑥2
] 

 
or 
 

�⃗�′ = 𝐴�⃗�,𝑤𝑖𝑡ℎ 𝐴 = [
3 −2
2 −2

] 

 
This system conforms to the type of problem we wish to solve.  And so the first step in the process will 
be to find the eigenvalues and eigenvectors needed to diagonalize the matrix.  If 𝜆1 𝑎𝑛𝑑 𝜆2 are the 

eigenvalues of the matrix, then 𝐷 = [
𝜆1 0
0 𝜆2

], and 𝑒𝐷 = [𝑒
𝜆1 0
0 𝑒𝜆2

].  The similarity transformation 𝑃 =

[�⃗�1 �⃗�2], where �⃗�1 is the eigenvector corresponding to the eigenvalue 𝜆1, and �⃗�2 is the eigenvector 
corresponding to 𝜆2.  If we apply the transformation to 𝑒𝐷, we get �⃗� = 𝑒𝐴𝑡𝑐 = 𝑃𝑒𝐷𝑡𝑃−1𝑐 and so if we  
write the solution in vector form, we obtain the following vector form of the solution. 
 

�⃗� = 𝑐1�⃗�1𝑒
𝜆1𝑡 + 𝑐2�⃗�2𝑒

𝜆2𝑡 
 
To obtain this solution, begin with finding the eigenvalues for the matrix. 
 

𝐴 = [
3 −2
2 −2

] , 𝐴 − 𝜆𝐼 = [
3 − 𝜆 −2

2 −2 − 𝜆
] 

 
The characteristic equation is (3 − 𝜆)(−2 − 𝜆) + 4 = 0 or 𝜆2 − 𝜆 − 2 = 0.  This factors as 
(𝜆 − 2)(𝜆 + 1) = 0.  Therefore, 𝜆1 = 2, 𝜆2 = −1. 
 
Next, we find each eigenvector. 
 

For 𝜆1 = 2, 𝐴 − 𝜆1𝐼 = [
1 −2
2 −4

].  This system is dependent, and we find the required eigenvector 

satisfies the system  
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𝑥1 − 2𝑥2 = 0
𝑥2 = (𝑓𝑟𝑒𝑒)

     𝑜𝑟     
𝑥1 = 2𝑥2

𝑥2 = 𝑥2 
 

 

Thus, �⃗�1 = [
2
1
]. 

 

For 𝜆2 = −1, 𝐴 − 𝜆2𝐼 = [
4 −2
2 −1

].  This system is also dependent, and the required eigenvector satisfies 

the system  
 

2𝑥1 − 𝑥2 = 0
𝑥2 = (𝑓𝑟𝑒𝑒)

     𝑜𝑟     𝑥1 =
1

2
𝑥2

𝑥2 = 𝑥2 
 

 

Thus, �⃗�2 = [
1
2
]. 

 

Thus, the solution to our system is �⃗� = 𝑐1 [
2
1
] 𝑒2𝑡 + 𝑐2 [

1
2
] 𝑒−𝑡.  We could write these as two separate 

equations if we wanted to plot them in our calculators (using the parametric functions screen). 
 

{
𝑥1 = 2𝑐1𝑒

2𝑡 + 𝑐2𝑒
−𝑡

𝑥2 = 𝑐1𝑒
2𝑡 + 2𝑐2𝑒

−𝑡 

 
 
You can graph the real eigenvectors by remember the relationship of a vector to the slope of a line.  If a 

vector is [
𝑎
𝑏
] = [

Δ𝑥
Δ𝑦

], then the slope of the line passing through the origin is 𝑚 =
𝑏

𝑎
=

Δ𝑦

Δ𝑥
.  And thus the 

equation of the line is 𝑦 =
𝑏

𝑎
𝑥, or in parametric form 𝑥 = 𝑎𝑡, 𝑦 = 𝑏𝑡.  Using this, I can graph the vectors 

along with the solutions. 
 
Enter the equations on the parametric functions screen.  I’ve used A and B to stand in for the values of 
𝑐1, 𝑐2 so that they can be adjusted without resetting the equation.  Using the values 𝐴 = 2, 𝐵 = −1 
produces the first graph, and 𝐴 = −1, 𝐵 = −1 produces the second. 

 

 
 

The constants are determined by initial conditions, such as �⃗�(0) = [
10
12

].  If we wanted to plot a variety 

of initial conditions, we can test values of 𝑐1, 𝑐2 essentially randomly to see what happened.  However, 
like with discrete dynamical systems, the trajectories are going to behave in predictable ways based on 
the eigenvalues. 
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Since raising 𝑒 to a positive value (𝑎 > 0), then 𝑒𝑎 > 1, and so, as 𝑡 increases, so does 𝑒𝑎𝑡.  Since raising 

𝑒 to a negative value (𝑏 < 0), then 𝑒𝑏 < 1, and so as 𝑡 increases, 𝑒𝑏𝑡 goes to zero.  Both the eigenvalues 
in our example are real, but it turns out that only the real part of the eigenvalues matter to determine 
the behaviour of the origin. 
 
If all 𝑅𝑒(𝜆𝑖) > 0, then the origin is a repeller.  If all 𝑅𝑒(𝜆𝑖) < 0, then the origin is an attractor.  If some 
𝑅𝑒(𝜆𝑖) > 0, and some are 𝑅𝑒(𝜆𝑖) < 0, then the origin is a saddle point.  If any of the real parts of zero, 
then the origin is stable in that direction (like 𝜆 = 1 for the discrete case). 
 
The complex case, as in the discrete case, induces a rotation, and like the discrete case, since the real 
parts are the same for both eigenvalues, the origin either attracts or repels, and cannot be a saddle 
point.  Thus we have the same range of trajectory patterns as we saw for the discrete systems, and the 
graphs of the general behaviour can be obtained in the same way. 
 
Complex eigenvalues can produce a graph like these:  

 
 

The first graph is a stable complex system (pure imaginary eigenvalues), while the second is spiraling 
into or away from the origin.  (Draw labels on your trajectories to mark the direction.)  There are no 
eigenvectors graphed because the two eigenvectors are complex. 
 
Typical trajectories can look like these: 

 
 
The first graph is an attractor (all real eigenvalues, both negative).  The second is a repeller with complex 
eigenvalues (real parts are positive).  The third graph is a repeller (all real eigenvalues, both positive).  
The fourth graph is a saddle point (real eigenvalues, one positive and one negative).  The eigenvectors 
are marked in red (on the colour version). 
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Another example with the trajectories and eigenvectors plotted 
more clearly: 
 
 
 
 
 
 
 
 
 
 
 

IV. Complex Case 
 
The complex case follows many of the same steps, but more work with the complex numbers is required 
and so these problems take a bit more algebra.  Let’s go through one example. 
 

Consider the system �⃗�′ = [
−7 10
−4 5

] �⃗�. 

 
The characteristic equation is (−7 − 𝜆)(5 − 𝜆) + 40 = 𝜆2 + 2𝜆 + 5 = 0.  This does not factor, and so 
we use the quadratic formula. 
 

𝜆 =
−2 ± √4 − 4(5)

2
=

−2 ± √−16

2
=

−2 ± 4𝑖

2
= −1 ± 2𝑖 

 
We know already that since the real part is negative, the origin with attract, and the system will spiral in 
because the eigenvalues are complex. 
 
Next, we need the eigenvectors. 
 

𝐴 − 𝜆1𝐼 = [
−6 − 2𝑖 10

−4 6 − 2𝑖
] 

 
This matrix is dependent and so our vector must satisfy 
 

−4𝑥1 + (6 − 2𝑖)𝑥2 = 0
𝑥2 = 𝑓𝑟𝑒𝑒

           𝑜𝑟          𝑥1 =
3 − 𝑖

2
𝑥2

𝑥2 = 𝑥2

 

 

Thus the eigenvector is �⃗�1 = [
3 − 𝑖

2
].  Since the vectors are conjugates just like the eigenvalues, the 

second vector is �⃗�2 = [
3 + 𝑖

2
].  However, it turns out there is trick so that we will only need to use the 

one. 
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If we follow the form of the original solution we need a form like this: �⃗� = 𝑐1�⃗�1𝑒
𝜆1𝑡 + 𝑐2�⃗�2𝑒

𝜆2𝑡, 
however, since both our vectors and exponential parts are partially really and partially complex, and 
that they are conjugates of each other, we can just work with one of the forms, split the result into fully 
really and fully complex forms, and use just those since the c’s can be choose to eliminate only the real 
or only the complex solutions if we choose the appropriate complex values.  This technique allows us to 
avoid that step. 
 

Consider the solution for 𝜆1.  �⃗� = [
3 − 𝑖

2
] 𝑒(−1+2𝑖)𝑡.  Recall from exponent properties we can rewrite 

𝑒(−1+2𝑖)𝑡 = 𝑒−𝑡𝑒2𝑖𝑡, and Euler’s theorem allows us to write 𝑒𝜃𝑖 = cos(𝜃) + 𝑖 sin (𝜃), so 𝑒(−1+2𝑖)𝑡 =
𝑒−𝑡[cos(2𝑡) + 𝑖 sin(2𝑡)].  Then, to separate the real and imaginary parts, we must distribute with the 
vector. 
 

[
3 − 𝑖

2
] 𝑒(−1+2𝑖)𝑡 = [

3 − 𝑖
2

] 𝑒−𝑡[cos(2𝑡) + 𝑖 sin(2𝑡)] = 

 

𝑒−𝑡 [
3 cos(2𝑡) + 3𝑖 sin(2𝑡) − 𝑖 cos(2𝑡) + sin(2𝑡)

2 cos(2𝑡) + 2𝑖 sin (2𝑡)
] 

 
Now separate the terms with 𝑖 and those without. 
 

𝑒−𝑡 [
3 cos(2𝑡) + sin(2𝑡)

2 cos(2𝑡)
] + 𝑒−𝑡 [

3 sin(2𝑡) − cos(2𝑡)
2 sin (2𝑡)

] 𝑖 

 
Our solution to the system them has the form 
 

�⃗� = 𝑐1𝑒
−𝑡 [

3 cos(2𝑡) + sin(2𝑡)

2 cos(2𝑡)
] + 𝑐2𝑒

−𝑡 [
3 sin(2𝑡) − cos(2𝑡)

2 sin (2𝑡)
] 

 
If you wish to plot these on a graph, do it parametrically so some selected values of 𝑐1, 𝑐2, with the top 
part of the vector being 𝑥, and the bottom part being 𝑦. 
 
As with the first example, I used A and B for 𝑐1, 𝑐2 so that the equations can be changed easily.  With 
𝐴 = 2, 𝐵 = −1 we get the first graph.    The second graphs has 𝐴 = 10,𝐵 = 20.  Both graphs spiral in as 
expected. 
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V. Practice Problems. 
 
For each of the problems below (1-9), find the general solution to the system of linear ODEs, and plot a 
few trajectories of the system.  Be sure to use arrows on the trajectories and eigenvectors to indicate 
the direction of motion. 

1. �⃗�′ = [
1 −2
3 −4

] �⃗� 

 

2. �⃗�′ = [
2 −1
3 −2

] �⃗� 

 

3. �⃗�′ = [
−2 1
1 −2

] 𝑥 

 

4. �⃗�′ = [
4 −3
8 −6

] �⃗� 

 

5. �⃗�′ = [
7 −1
3 3

] �⃗� 

 

6. �⃗�′ = [
4 −3
6 −2

] �⃗� 

 

7. �⃗�′ = [
−2 1
−8 2

] �⃗� 

 

8. �⃗�′ = [
3 −2
4 −1

] �⃗� 

 

9. �⃗�′ = [
1 −5
1 −3

] �⃗� 

 
For each of the three dimensional problems below (10-12), find the general solution to the system.  
Describe the character of the origin.  [Hint: if the real part of all the eigenvalues are positive, it’s a 
repeller; if real part of all the eigenvalues are negative, it’s an attractor; if there is any sign change in the 
real part, then the origin is a saddle point.] 

10. �⃗�′ = [
3 2 4
2 0 2
4 2 3

] �⃗� 

 

11. �⃗�′ = [
1 0 0
2 1 −2
3 2 1

] �⃗� 

 

12. �⃗�′ = [
−8 −12 −6
2 1 2
7 12 5

] �⃗� 

 
 


