Instructions: Attempt to answer these questions by reading the textbook or with online resources before coming to class on the date above.

1. What kind of situation are χ^2 tests designed to analyze?

independence and model fit (homogenisty)

2. What is the formula for χ^2 ?

X= \(\tag{\cells} \) (observed-expected)^2

Recells expected

3. How do we find the expected numbers in each category? Or the probabilities?

probabilities (or a model) may be given the multiply by the total sample size (& observed).

4. How do we find the degrees of freedom of the χ^2 test?

Cells - one

5. How do we get the P-value for the test out of the calculator?

x2 cdf (feat statutui, Eqq, df)

6. What is the null and alternative hypotheses for the χ^2 test?

Ho: fits the model Ha: does not fit the model

7. How can we get the expected numbers for our χ^2 test when we want the data to fit a particular distribution?
Calculate the probabilies for the distribution
then multiply by botal sample Size.
hypecally for discrete (or discretized) dishibutions
8. How does the calculation change for continuous distributions?
break into classes, the cale prob for each class
9. How do two-way contingency tables work with χ^2 tests?
Similar to one row, but the expected count in each
cell is given by eij = (Seem gifth row) (swing)
then $\chi^2 = \frac{(exp - oles)^2}{expected}$ 10. How do we calculate expected numbers for each cell?
10. How do we care and
11. How is the test for homogeneity and the test for independence essentially the same?
18 and Octors are identical
and every dent Hon the mobalitudes
Should be the same went where (with the second vainable)
12. What degrees of freedom are needed for testing contingency tables?
table is mxn making then of = (m-1) (n-1)
13. How can it be done in the calculator?
Stat Tests -> X2 fest
enter observations in nating A. colculator does there