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Math 2568, Exam #3, Part |, Spring 2015

Instructions: Show all work. You may not use a calculator on this port
answers (yes, that means fractions, square roots and exponentials, an
as possible. Be sure to complete all parts of each question. Provide e
When you are finished with this portion of exam, get Part Il.
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3. Determine if each statement is True or False. For each of the ques
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. T

a

G I B
Al 20 [ 3)
As .2 o
A9 4T 4%

- 0-0--08
©-0-60- -

The weather in a particular town in the Pacific northwest is classifie
If the weather is good on a particular day, the probability it will ren
and there is a 45% chance it will be indifferent.| If the weatheris in
a 20% chance it will become good, and a 42% chance it will becom
particular day, there is a 48% chance it will be bad the next day, an
indifferent. Construct the stochastic matrix that models this proble
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If A is an eigenvalue of 4, then A2 is an

If zero is not an eigenvalue of A, then {

If ¥ is an eigenvector of 4, then ¥ is als
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The real eigenvalues of a discrete dynamical system must always both

©
attract or repel from the origin.
@ In a system of ODEs, the magnitude of 4 determines whether a complex
eigenvalues causes the origin to repel pr attract.
F The dot product or scalar product is one type of inner product.
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To be an inner product space, a space needs to be both vector space,
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and have a particular inner product defined on it.
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F Normalizing a vector refers to making a vector pointing in a particular
direction have components that satisfy certain conditions.

@ The distance between two points (vectors) in R™ is defined to be
&l = N1#]l.

4. Find the equilibrium vector of the matrix P = [; 2] algebraically. Be sure to properly normalize

the vector. (6 points)
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5. For each of the situations below, determine the properties of the discrete dynamical system. Is the

origin an attractor, a repeller, or a saddle pointi? Sketch the eigen
they are real) and plot some sample trajectories. (4 points each)
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d. A, = 0.5+ 0.6i,4, = 0.5 — 0.6i.
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6. Forthe vegtors i = [ 9 ],1’7’ = [ 5 ], find the following: (3 points each)
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Math 2568, Exam #3, Part ll, Spring 2015 Name
Instructions: Show all work. You may use a calculator on this portion pf the exam. To show work on
calculator problems, show the commands you used, and the resulting matrices. Give exact answers
(yes, that means fractions, square roots and exponentials, and not decimals) unless specifically directed
to give a decimal answer. This will require some operations to be done by hand even if not specifically
directed to. Be sure to complete all parts of each question. Provide explanations where requested.
_ 4, 0 -1
1. Find the eigenvalues and eigenvectors for the matrix A = [—] 0 4 |. (9points)
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2. Find the similarity transformation for the matrix B = [i’ _62] that converts this matrix into a

similar rotation matrix. Then use that matrix to find the angle of rotation. Give your angle in
radians rounded to 4 decimal places, or in degrees rounded to pne decimal place. (10 points)
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3. Use your calculator to find the equilibrium vector c$f the stochastic matrix P =
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4. Does the matrix in #3 have enough communication between states to have only one equilibrium
vector? Does the matrix have any absorbing states? Explain your reasoning. (5 points)
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5. Solve the discrete dynamical system giverw by Xjpq = [_03 0'4] Xi. Find the eigenvalues and
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6. Solve the system of ODEs given by ¥’ = [;
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solution in exact form with e. (10 points)
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8. Determine if the polynomials p(t) =2 —t

product (f|g) 2, F(£)g(£)dt. (6 points)
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