Instructions: Show all work. Give exact answers unless specifically asked to round. Be sure to answer all parts of each question.

1. Write a system of equations that models a 2-tank system where Tank A has 1000L of brine solution containing 100kg of salt to start, and Tank B has 2000L with no salt to start. Pure water flows into Tank A at 4L/s and the mixture flows into Tank B at the same rate.

$$\frac{df}{dt} = -\frac{A}{lood} \cdot 4 = -\frac{A}{250}$$

$$\frac{df}{dt} = -\frac{A}{lood} \cdot 4 = -\frac{A}{250}$$

$$= \frac{A}{250}$$

73(0) = 100 B(0) = 0

2. Estimate the solution to y' = 2xy, y(0) = 2 at the point y(1) in 3 steps using improved Eulers:

$$k_{1} = f(t_{n}, y_{n})$$

$$u_{n+1} = y_{n} + \Delta t k_{1}$$

$$k_{2} = f(t_{n+1}, u_{n+1})$$

$$y_{n+1} = y_{n} + \frac{1}{2} \Delta t (k_{1} + k_{2})$$

$$\Delta x = \frac{1}{3}$$

Compare your result to the true solution $y = 2e^{-x^2}$.

$$X_0=0$$
 $Y_0=2$ $K_{10}=Z(0)(2)=0$ $U_{11}=2+\frac{1}{3}(0)=2$ $K_{20}=2(0)(2)=0$ $Y_{11}=2+\frac{1}{2}\cdot\frac{1}{3}(0+0)=2$ $X_1=\frac{1}{3}$ $Y_1=\frac{1}{3}$ $Y_1=\frac{1}{3}$

$$X_1 = \frac{1}{3} Y_1 = \frac{2}{3} k_{11} = \frac{2(\frac{1}{3})(2) = \frac{4}{3} k_{22}}{k_{21}} = \frac{2(\frac{1}{3})(2) = \frac{4}{3} k_{22}}{k_{23}} = \frac{2(\frac{1}{3})(2) = \frac{4}{3} k_{23}}{k_{23}} = \frac{2(\frac{1}{3})(2) = \frac{2}{3} k_{23}}{k_{23}} = \frac{2(\frac{1}{3})(2) = \frac{2}{3} k_{23}}{k_{23}} = \frac{2}{3} k_{23}}{k_{23}} = \frac$$

$$X_{2} = \frac{3}{3} \quad Y_{2} = \frac{202}{81} \quad K_{12} = (2)(\frac{3}{3})(\frac{280}{51}) = \frac{308}{243} \quad M_{3} = \frac{202}{51} + \frac{1}{3}(\frac{808}{243}) = \frac{4624}{724}$$

$$K_{22} = 2(\frac{2}{3})(\frac{3626}{746}) = \frac{10504}{2157} \quad Y_{3} = \frac{202}{51} + \frac{1}{2} \cdot \frac{1}{3}(\frac{808}{243} + \frac{10504}{2157}) =$$

$$N_{3} = 1$$
 $Y_{3} = \frac{25250}{6561} \approx 3.848$