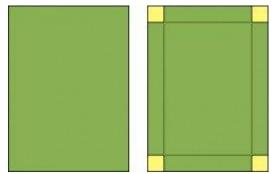
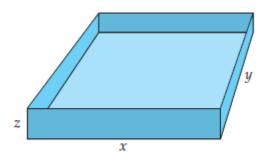
Modeling with Polynomials MAT 142, Spring 2017


A classic problem in modeling with polynomials is the open-top box. The problem involves determine what size box can be made from a flat sheet of a given size, by cutting out corners from the sheet and folding up the sides. Students are often then asked to determine properties of the box they create, like the maximum volume or the total cost of the surface, etc.

This project will construct a function for the volume using modeling techniques and compare the resulting function to the one we obtain from using algebraic principles.

It is intended for this project to be done in small groups, but individual students can successfully complete the tasks below. During class time, however, I encourage students not to work alone. A class can elect to collect data and share it with the class to make the process go more quickly.

Materials needed:


- A piece of paper cut to a square
- A piece of paper cut to a rectangle
- A pair of scissors
- A ruler or other measuring device
- A calculator (a graphing calculator with regression features, or use a spreadsheet program like Excel)
- Colored pencils
- A. Beginning with the square sheet, cut small squares from the corner as shown below. (Start with very small squares. It's easy to make the squares you cut out bigger; it's not so easy to put material back!)
- B. Fold up the edges to create a box that looks like the one at the top of the page.

C. Use your ruler to measure the dimensions of the resulting box and record your measurements in the table below. Calculate the volume and record it in the last column.

It may help to label on your sheet which directions is width and which is length so that on your next measurement, you can be consistent with which is which.

D. Repeat your calculation until the cuts you are making use up nearly all the material and the volume of your box is shrinking.

x - size of	Length of base -	Width of base -	Height of box -	Volume - V
				volume - v
square cut from	L	W	Н	
corner (length)				

E. What do you notice about how the length, width and height are changing as the size of the squares you remove changes?

x – size of square cut from corner (length)	Length of base – <i>L</i> in terms of <i>x</i>	Width of base – W in terms of x	Height of box – <i>H</i> in terms of <i>x</i>
x			

F. On the graph below, plot the *x*-values along the horizontal axis, and the Volume along the vertical axis, to create a scatterplot. What do you notice about the graph you created? Be sure to label your axes appropriately.

וו										
1										
]										
l	 	 	 			 	 	 	 	
l	 							 		
l	 	 	 	 		 	 	 	 	
J	 	 	 	 		 	 	 	 	
J	 									
-l	 									
J	 									
J	 									

G. Our next step is to construct a regression equation in our calculator to model the volume of the box. Follow the steps below to enter data into a TI-84.

Press the L_1 key and then select **Edit**. You will now see the data screen with the six lists, L_1 through L_6 (use your right arrow to see L_4 through L_6).

EUU CALC TESTS	L1	L2	L3 1	L4	L5	LG	6
18Edit… 2:SortA(
3:SortD(
4:ClrList 5:SetUpEditor							
S. Decopedicor							
	L1(1) =			L6(1)=			

If there is already data in one of the lists, we need to clear the list. Do this by placing your

cursor at the top of the list you wish to clear and then press the **CLEAR** button. DO NOT press the **DEL** button - this will delete the list from your calculator.

Enter your x data into L_1 and your volume data into L_2 . You can navigate from list to list with the cursor arrow buttons.

H. Sketch the graph in your calculator. To draw the graph in the TI, select

enter **StatPlot**. Turn on Plot1, press , and move the cursor to ON and press again. On the Type line, the first graph type is the scatterplot. Put the cursor over it and press

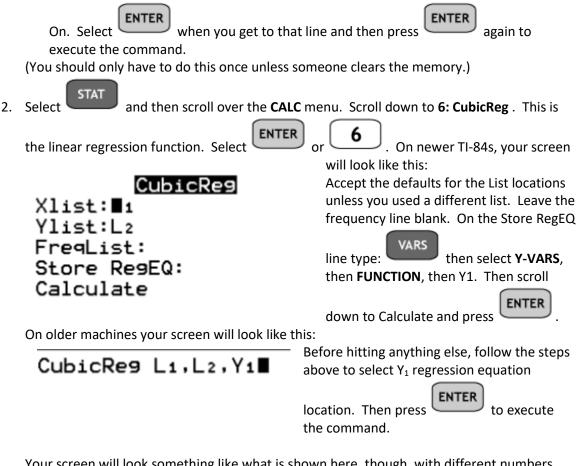
ZOOM

ENTER

ENTER to select. We used the default XList (L_1) and the default YList (L_2) , so we don't need to adjust those settings.

After setting up the graphing screen, press

followed by for **9: ZoomStat**. This will adjust your Window settings to match the data sorted in your lists.


Plot1 Plot2 Plot3
On Off
Туре: 🔤 🗠 🏊 🞰 🗠
Xlist: 1 1
Ylist:L2
Mark: 🖸 + 🔹 🕔
Color: BLUE

2nd

- I. Compare the results to the scatterplot you drew above. Does it match? (If the answer is 'no', find the error before proceeding!)
- J. Next we need to set up the calculator to find the regression equation for us. Complete the following steps.
 - 1. Turn on Diagnostics:
- MODE
- a. On newer TI-84s, select and scroll down toward the bottom on the list of commands (onto the second page). You will see a line for the Diagnostics. Select ON to be highlighted.

2nd

b. On older machines (TI-83s, and some older 84s), press for **CATALOG**. Scroll down through the alphabetical list to the line that reads Diagnostics

Your screen will look something like what is shown here, though, with different numbers.

The equation the coefficients belong to appears first: $y = ax^3 + bx^2 + cx + d$, and the values of the coefficients are shown below in order. The final value show up only when the Diagnostic setting is ON. The R^2 measures how good the fit to the data is. Closer to 1 is a better fit.

CubicRe9 y=ax3+bx2+cx+d a=-.0498363582 b=2.350568897 c=-7.510077028 d=26.64954657 R²=.9876878531

K. What equation did your calculator give you? Write the result in function notation.

Check with your instructor.

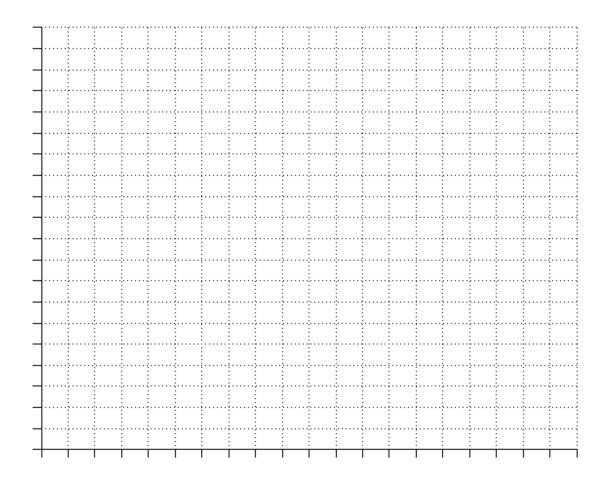
L. Graph the equation against your plotted data. Visually inspect how good the fit is. Does the equation do a good job of modeling the data you have? If it does not, consult with your instructor about obtaining a different equation type. Add your final equation to the scatterplot in F.

M. Next we want to compare our equation to what we might obtain from algebraic principles. Return to the expressions you came up with in E for Length, Width and Height, and multiply them to obtain a volume equation. Multiply out the factored expression.

N. How do the coefficients of the equation above (M) match the coefficients of the equation you obtained from the calculator in K?

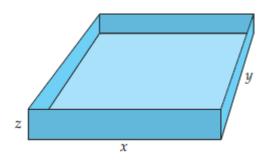
- O. Add your algebraic function to your calculator in Y_2 and compare the equation to the data. Add it to the scatterplot in F with a different color pencil.
- P. What is the domain and range of your volume equation? Use your graph and explain your reasoning. [Hint: What happens to the volume if you go outside the domain? Is this realistic?]

Q. How do your considerations of domain and range change knowing that this is a real-world problem and not simply a random algebraic function?


R. Repeat the above process with the rectangular sheet of paper. Record values in the table below.

x – size of square cut from corner (length)	Length of base - L	Width of base - W	Height of box - <i>H</i>	Volume - V

S. What do you notice about how the length, width and height are changing as the size of the squares you remove changes?


x – size of square cut from corner (length)	Length of base – <i>L</i> in terms of <i>x</i>	Width of base – W in terms of x	Height of box – <i>H</i> in terms of <i>x</i>
x			

T. On the graph below, plot the *x*-values along the horizontal axis, and the Volume along the vertical axis, to create a scatterplot. What do you notice about the graph you created? Be sure to label your axes appropriately.

- U. Repeat the steps in G-J to find the regression equation and record it below in function notation.
- V. Construct your function for the volume from the expressions in S and compare your results on the graph.

W. If we wanted instead to obtain the surface area equation (rather than the volume equation), what would need to change? Write an expression for the surface area of your open-top box based on the size of square removed from the corner.

X. If the cost of the material for the box is \$6.50 per square inch, how much material is needed to construct the box of largest volume (using your equation from V) if we neglect the material removed from the corners?

Check with your instructor.