V= V09 (cos (1.279) 9 Sin (1.279))

Instructions: Show all work. Use exact answers unless otherwise as sed to round.

1. Use $\vec{u} = \langle -4, -1 \rangle$, $\vec{v} = \langle 3, 10 \rangle$ to find the following.

a.
$$\vec{u} + \vec{v}$$

b. $\|\vec{u}\|$

c. Write \vec{v} in polar form.

$$4an^{-1}(\frac{6}{3}) \approx 1.279 \text{ radians}$$

 $||\tilde{V}|| = \sqrt{3^2 + 10^2} = \sqrt{109}$

d. Write a unit vector in the direction of \vec{u}

e. Find $\vec{u} \cdot \vec{v}$

$$-12 - 10 = -22$$

f. Find the angle between \vec{u} and \vec{v}

2. Find the resulting for and direction of adding $||F_1|| = 200 \ lbs.$, $\theta_1 = -45^\circ$, and $||F_2|| = 500 \ lbs.$, $\theta_2 = 30^\circ$. Round answers to one decimal place.

$$F_1 = \langle 200 \frac{1}{\sqrt{2}}, 200 (-\frac{1}{\sqrt{2}}) = \langle 100 \sqrt{2}, -100 \sqrt{2} \rangle$$

 $F_2 = \langle 500 \sqrt{2}, 500 (\frac{1}{2}) \rangle = \langle 250 \sqrt{3}, 250 \rangle$

3. Find the work done by pulling a wagon with a force of 25 lbs. at an able of 20° (with respect to the horizontal) if the wagon is pulled 50 feet. Round answer to one decimal place.

$$F = \langle 25000 20^{\circ}, 25800 20^{\circ} \rangle$$
 $d = \langle 50, 0 \rangle$
 $\vec{F}.\vec{d} = 1174.62 \text{ ft-16s}.$