Name

Instructions: Show all work. Use exact answers unless otherwise asked to round.

1. A mass weighing 16 pounds stretches a spring $\frac{8}{3}$ of a foot. The mass is initially released from a point 2 feet below the equilibrium position, and the subsequent motion takes place in a medium that offers a damping force equivalent to $\frac{1}{2}$ the instantaneous velocity. Write the equation of the spring-mass system (either as a linear system or a second-order equation.)

$$F = 16 = k \left(\frac{8}{3}\right)$$

$$16 = k \left(\frac{8}{3}\right)$$
 $F = ma$
 $k = 6$ $16 = m(32)$

y"+y + 12y=0

$$X_1(0) = -2, X_2(0) = 0$$

Find the particular solution for the given initial conditions.

$$r = \frac{1 \pm \sqrt{1 - 48}}{2} = -1 \pm \sqrt{47}$$

$$C_2 \cdot \sqrt{\frac{1}{2}} = -\frac{1}{\sqrt{1+2}}$$
 $C_2 = \frac{-2}{\sqrt{1+2}}$

$$C_2 \circ \sqrt{\frac{1}{12}} = -\frac{2}{\sqrt{47}}$$
 $C_2 = \frac{2}{\sqrt{47}}$ $(2 = \frac{2}{\sqrt{47}})$ $(2 = \frac{2}{\sqrt{47}})$ $(2 = \frac{2}{\sqrt{47}})$ $(2 = \frac{2}{\sqrt{47}})$