BUS 310, Exam #2F, Part III, Spring 2019

Name ____ Section

Instructions: This exam is in three parts: Part I is to be completed partly at home using the materials posted on Blackboard for Part I and you will answer questions about that work in class below; Part II is to be completed entirely in class using your computer. Part III is to be done entirely in class without your computer.

- 1. You may not use cell phones, and you may only access internet resources you are specifically directed to use: You may access your data file for Part I of the exam in Blackboard. You may access the data files posted to Blackboard for the Exam part II, but not for Part III.
- 2. It is a violation of the honor code to communicate with other students in or out of the class during the exam, by any means. Students whose exams show evidence of coordination will be reported.
- 3. Show all work to support your reasoning. Primarily, this can be done in Excel. Deletion of evidence of your logical process can result in loss of credit. A significant amount of credit goes toward process, reasoning and interpretation.
- 4. When rounding, do not over-round. In general, do not report dollar amounts beyond the penny. Means should be rounded to one digit more than the original data; standard deviations to two digits more. Do not report fractions rounded to single digit expressions: $\frac{131}{256} \neq \frac{1}{2}$, and do not round decimals or percents to a single digit: $0.57846 \dots \neq 60\%$ or 0.6. Report a minimum of two digits, up to four, unless otherwise specified in the problem.
- 5. If a problem asks for an explanation, state the solution clearly, then interpret or explain in addition to stating the solution, not in place of. Explanations without solutions, just as solutions without explanations, will not be awarded full credit.

Part I: At Home

This part was completed at home. You can upload the Excel file for Part I to the Part I folder in Blackboard for use during the Exam period. However, this submission will **not** be graded in this location, it must be submitted to the "**to be graded** folder" to receive credit.

Part II: In Class (with computer)

Before completing Part III, complete Part II in class. Return the paper to your instructor and put away your computer. Then pick up Part III.

Part III: In Class (without computer)

- 1. You may use a handheld calculator for this portion of the exam. Any calculator is fine, as long as it is not on a device that connects to the Internet. That means, you may not use the calculator on your phone or smart watch. You may also not share calculators with another student taking the exam at the same time.
- 2. This is Exam F.
- 3. Answer the questions on the paper exam. Sign the honor code statement on the next page.
- 4. Turn in your paper copy of the exam to your instructor. Your instructor will attach this portion of the exam to the version of Part II that you submitted previously.

Honor Code Statement:

l, ____

(print your name), agree to abide by the George

Mason Honor Code and Academic Integrity Pledge: *To promote a stronger sense of mutual responsibility, respect, trust, and fairness among all members of the George Mason University Community and with the desire for greater academic and personal achievement, I, a student member of the university community, pledge not to cheat, plagiarize, steal, or lie in matters related to academic work.* Furthermore, I have read and I agree to follow the guidelines laid out in the instructions for this exam above. I also agree not to participate in the efforts of other students to circumvent these guidelines, or to assist in their violations of the code, and will report such efforts in a timely manner.

Student Signature and G#	 	Today's Date

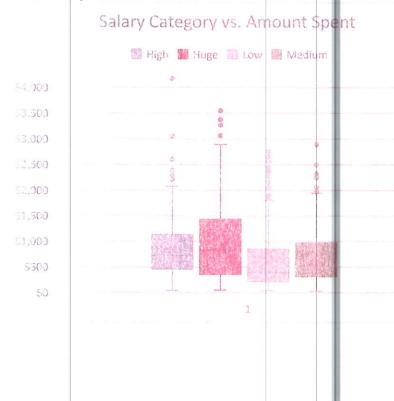
Part III:

 When a hypothesis test is conducted, there are four possible combinations of outcomes: The null can be true, the null can be false, our conclusion can agree with the true state of nature, or it may not. A table of these situations is shown below. Two of these combinations are correct and two produce errors. Label all four possibilities as correct, or, if an error, which kind of error it is. (8 points)

Nature: Hy True Nature Ho False Conclusion: H₀ True Correct Type I Type II Convect Conclusion: H₀ False

Below you will find calculations for a χ^2 -test of salary versus gender. Use this information to answer the questions that follow.

		unt of nder	Column Labels		
	Ro	w Labels	Female	Male	Grand Total
	Hig	h Salary	138	118	256
	Hu	ge Salary	138	75	213
	Lov	v Salary	130	187	317
	Me	dium Salary	101	113	214
	Gra	and Total	507	493	1000
	Ro	w Labels	Female	Male	
	Hig	h Salary	129.792	126.208	
		ge Salary	107.991	105.009	
	Lov	v Salary	160.719	156.281	
	Me	dium Salary	108.498	105.502	
		-Square	30.92847335		
		/alue	8.80042E-07		
2.	State the degrees	of freedom fo	r the test. (4 points	;)	
			4 📮		


3. In the context of this problem, describe what a Type II error would mean. (6 points)

It would mean that the five state of nature. is that the variables gender and salang are dependent, but we do not have sufficient endence to prove This.

4. Explain how the value for the cell Medium Salary and Male is calculated in the Expected Table. (4 points)

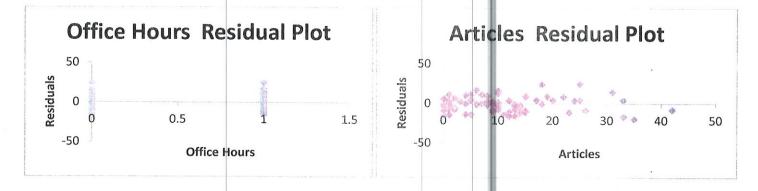
214*493 or Total Medium & Total Male Gand Total

Below you will find a boxplot and ANOVA output for a test of salary category vs. Amount Spent. Use this information to answer the questions that follow.

Anova: Single Factor SUMMARY								
Groups	Ċ	Count	Sum	Average	Variand	ce		
High		256	218588	853.859375	342556.2	468		
Huge		213	209922	985.5492958	556203.0	412		
Low		317	197266	622.2902208	326807.8	142		
Medium		214	156552	731.5514019	310714.2	016		
ANOVA								•
Source of Variation		SS	df	MS	F		P-value	F crit
Between Groups	187	77330.51	3	6259110.171	16.63660	611	1.49348E-10	2.613839375
Within Groups	374	720281.9	996	376225.1826				
Total	3934	497612.4	999					

5. Do the graphs and table appears to support the assumption of approximately equal variances? Why or why not? (4 points)

Iow, meduin 3 Regh all look about the same but huge is beggin (but less than NJ)


6. Does the ANOVA test provide sufficient evidence to support the claim that salary and amount spent are related? Explain. (6 points)

7. Based on the boxplot, which two boxplots appears to be the most different? (4 points)

low and huge

Use the data in the residual graphs, correlation tables and regression output on the pages that follow to answer the remaining questions.

	Evaluation	Articles	Office Hours	Salary
Evaluation	1			
Articles	0.491503	1		
Office Hours	0.052011	-0.19992	1	
Salary	0.500421	0.898134	-0.288782371	

8. Based on the residual plots, does the data appear to satisfy the equal variance assumption? Explain. (4 points)

yes, the spread on both graphs is pretty ever

9. Based on the table of correlations, why does it make sense that the final model would include articles and evaluation as variables, but not office hours? Explain. (6 points)

10. What is the final regression model and its R^2 value? (6 points)

$$Y = 78.21 + 2.12 \times 1 - 5.16 \times 2$$

articles office hours
 $R^2 = 0.819$

11. Use the model above to predict the salary of a faculty member with an evaluation score of 3.1, has published 21 articles, and does not hold office hours. (6 points)

12. State the 95% confidence interval for the intercept and interpret its meaning in context. (6 points)

(73, 63, 82, 79)

We are 95% confident that the time value of the intercept is between 73.63 and 82.79.

SUMMARY OUTPUT

Regression Statistics	atistics
Multiple R	0.905025681
R Square	0.819071483
Adjusted R Square	0.814045691
Standard Error	9.832671627
Observations	75
ANOVA	
đ	f SS

					1 Innor 00 0%	opper 23.070	84 78808501	TCC00007:40	2 447106153	OCTOOT 111-3
					10141 PG 0% 11 nnor 00 0%		72 13037812 84 28808501	110,0001.1	1.791644478 2.447106152	01
					Upper 95%	0000 in 11 -	82.78922143		2.366297481	
Significance F	1.86317E-27				Lower 95% Upper 95%		73.62924259		1.87245315	
F	15756.52181 162.9736092 1.86317E-27				P-value		34.04096393 3.99829E-46		1/.11023985 4.46456E-27	
MS	15756.52181	96.68143133			t Stat		34.04096393		CSESSULL./L	
SS	31513.04361	6961.063056	74 38474.10667		Coefficients Standard Error		2.29/503448	013305500	202000271.0	
df	2	72	74		Coefficients	FOLCEDOE OF	T0757607.01	7 110375215	CTCC/CCTT-7	
	Regression	Residual	Total			10+0100+	ווווכו רכחו	Articles		

-11.29460362 0.978986326 1.791644478 2.447106153

-0.534164696

-9.781452601

0.029301745

-2.223766304

2.319402286

-5.157808649

Office Hours

Standard errors:

$$\sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}} \qquad \sigma_{\overline{p}} = \sqrt{\frac{p(1-p)}{n}} \qquad spooled = \sqrt{\frac{(n_1-1)s_1^2 + (n_2-1)s_2^2}{n_1+n_2-2}} \qquad s_{x_1-x_2} = s_{pooled} \sqrt{\frac{n_1}{n_1} + \frac{1}{n_2}} \qquad s_{x_1-x_2} = s_{pooled} \sqrt{\frac{n_1}{n_1} + \frac{1}{n_2}} \qquad s_{x_1-x_2} = s_{pooled} \sqrt{\frac{n_1}{n_1} + \frac{1}{n_2}} \qquad m = n = \frac{4s_{x_1}^2(\alpha_1^2 + \alpha_2^2)}{w^2}$$
Confidence intervals:
One sample:
 $\overline{x} \pm t_{\alpha/2,n-1} \frac{s}{\sqrt{n}} \qquad \overline{p} \pm t_{\alpha/2,n-1} \sqrt{\frac{s_1^2 + \frac{s_2}}{n_1}} \qquad (\overline{p}_1 - \overline{p}_2) - z_{\alpha/2} \sqrt{\frac{p(1-\overline{p}_2)}{n_1} + \frac{\overline{p}_2(1-\overline{p}_2)}{n_2}}$
Test statistics:
One sample: $z \text{ or } t = \frac{\overline{x} - \mu_3}{x/\sqrt{n}} \qquad z = \frac{\overline{p} + p_0}{\sqrt{p_0(1-p_0)/n}}$
Two samples: dependent: $z \text{ or } t = \frac{\overline{a}_2 - \delta}{\frac{z_0}{\sqrt{n}}}$
Independent: $z \text{ or } t = \frac{(\overline{s}_1 - \overline{s}_2) \pm t_{\alpha/2,n-1} \sqrt{\frac{s_1^2 + \frac{s_2}}{n_1}}}{\sqrt{\frac{s_1^2 + \frac{s_2}}{n_1}}} \qquad z = \frac{(\overline{p} - \overline{p}_2) - (p_1 - p_2)}{\sqrt{\frac{n_1 + p_2}{n_1}} + \frac{\overline{p}_2(1-\overline{p}_2)}{n_2}}$
Degrees of freedom (two samples, unpooled) $v = \frac{(\frac{s_1^2 + \frac{s_2}}{n_1} + \frac{s_1^2}{n_2}}{(\frac{s_1^2 + \frac{s_2}}{n_1} + \frac{s_1^2}{n_2})} \qquad F = \frac{MSE}{MSS}$
ANOVA:
 $MSE = \frac{(\overline{b}_1 - n)(\overline{p} - \overline{p})^2}{I-1} \qquad MSS = \sum_{j=1}^{J} \frac{(n_j - 1)s_j^2}{n-j}} \qquad F = \frac{MSE}{MSS}$