1/16/2019

Logical Notation

A = AND $\checkmark = OR$ $\rightarrow = IF.... THEN$ $\sim = NOT$ ↔ = IS THE SAME AS, or "if and only if" $<math>\forall = \text{ for all}$ $\exists = \text{ there exits}$! = unique

Logical notation is related to set notation and can be paired with it.

	Set Notation		Logical Notation
AND	Ω		Λ
OR	U		\checkmark
NOT	1		~
"IN"	E	C	\rightarrow
EQUALS	=		\leftrightarrow

	Set Notation		Logical Notation
AND	intersection		conjunction
OR	Union		disjunction
NOT	complement		negation
"IN"	Is an element of	ls a subset of	conditional
EQUALS	equals		biconditional

Suppose that p = The sky is blue.

And suppose that q = The water is calm.

 $\sim p$ = The sky is not blue.

 $p \wedge q$ = The sky is blue and the water is calm.

 $p \lor q$ = The sky is blue or the water is calm.

 $p \rightarrow q$ = If the sky is blue, then the water is calm.

 $p \leftrightarrow q$ = If the sky is blue, then the water is calm, and if the water is calm, then the sky is blue.

Or: The sky is blue if and only if the water is calm.

Problems #8 and 9 on the homework are like this. In one case, writing the notation in words, and in the other problem, putting a statement into notation.

 $\forall x (x > 0, x \in N) =$ For all x, x is greater than 0 if x is in the set of natural numbers. (Statement is TRUE) $\exists x (x^2 = 4) =$ There exists an x such that $x^2 = 4$. (Statement is TRUE, $x = \pm 2$) $\exists ! x (x^2 = 0) =$ There exists a unique x such that $x^2 = 0$. (Statement is TRUE, x = 0, and this is the only solution.) Problem #10 is like this. Translate the notation into "English", and then determine if the statement is true or false.

Problems #11-17 – you can try to tackle these if you like. Some of them ask you to look up information and comment on it. #17 is similar to the AxB discussion. We will talk about these more on Wednesday.