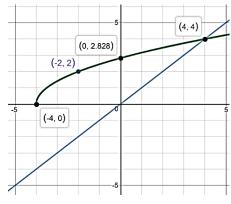

MTH 161, Practice Exam #3, Spring 2019

- 1. Find the function f that is finally graphed after each of the following transformations is applied to $y = 2^x$.
 - a. Reflect about the x-axis.
 - b. Shift down one unit. f(x) =_____
- 2. Sketch a graph of a function which is not one-to-one.
- 3. A student writes that $(\ln 2)^3 = 3 \ln 2$ by the power property of logarithms. Explain why this is incorrect.
- 4. Consider the function $f(x) = \ln(2 x)$. Sketch an accurate graph of the function on graph below.

- a. $f(0), f(-2), f^{-1}(2), f^{-1}(4)$
- b. Find the domain and range. How does this relate to the domain and range of $f^{-1}(x)$?
- c. Sketch an accurate graph of f^{-1} on the same graph as f using specific coordinates.
- 6. Use the properties of logarithms to write the expression $\ln x + \frac{1}{2}\ln(4-x) \ln 9$ as a single log expression. Show all intermediate steps.
- 7. Use properties of logs to expand the expression in terms of logs of the variables and simplify. Show all steps.
 - a. $\ln\left(\frac{\sqrt[4]{x}}{8y}\right)$ b. $\log_2(8x^3)$
- 8. Use the change of base formula to rewrite the expression $\log_2 0.47$ in terms of natural log.

and label intercepts and asymptotes.

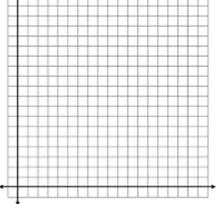

State

a.

b. The function is one-to-one. How can you tell from the graph?

c. Algebraically find the inverse $f^{-1}(x)$.

5. Use the graph below to fill in the function values.



- 9. An initial investment of \$50,000 grows at an annual interest rate of 7% compounded continuously. Use the model $A = Pe^{rt}$ to calculate how long it will take to triple. Show your calculation and express your answer as an exact expression.
- 10. Find the exact value of the expression.
 - a. $3\ln(e^2)$
 - b. $\log(10^{14}) 10^{3\log 2}$
- 11. Solve the following expressions algebraically. Give exact values.

a.
$$2^{3x} = 128$$

- b. $\frac{1}{3}\ln(1-x) = 10$
- c. $3 5e^{3t} = 10$
- d. $\ln x + \ln(x+2) = 3$
- 12. In a group project in learning theory, a mathematical model for the percent *P* of correct responses after *n* trials was found to be $P(n) = \frac{0.9}{1+e^{-0.1n}}$.
 - a. What percent of the responses are correct in the first trial?
 - b. After how many trials will 70% of the responses be correct?
- 13. A new truck costs \$35,000. The value of the truck after t years is modeled by $V(t) = 35000 \left(\frac{4}{5}\right)^t$.
 - a. Evaluate the function at the given times.

t	V(t)
0	
1	
2	
3	

- b. Sketch the graph by hand in an appropriate window range. Label axes.
- c. Find the value of the truck after 7 years. Show work.
- d. Based on the graph, describe how the value of the truck changes as time goes by. Then complete the statement: As time goes by, ______. As $t \to \infty$, $V(t) \to$ _____.
- 14. Given the graph of $f(x) = \ln x$, then the graph of $y = \ln(x k)$, k > 0, then which of th following is true?
 - a. A vertical asymptote at x = k.
 - b. A horizontal asymptote at y = k.
 - c. A vertical asymptote at x = 0.
 - d. A horizontal asymptote at y = 0.

- 15. What logarithmic equation is equivalent to $c^b = a$?
- 16. What is the first step to solving the equation $2 + \ln(x + 1) = 7$.
- 17. Which statement is true? Mark all that apply.
 - a. $2^{x} \log_{2} x = x$ b. $\log_{2} 2^{x} = x$ c. $2^{\log_{2} x} = x$ d. $\log_{2} x = 2^{x}$
- 18. The expression $\log x 3 \log 2$ is equivalent to $\log(x 8)$ is true or false?