MT 112, Exam #1 Review, Spring 2020 Name ____

The exam will cover topics in Set Theory and Logic. Topics to review include:

- Set notation including $\cup, \cap, \emptyset, \{\}, \in, \subset, A^c, -, |A|$
- Definitions such as union, intersection, empty set, mutually exclusive, subset, complement, universal set
- Translate set builder notation into listed set notation (interpreting the set elements)
- Be able to draw (shade) two- and three-set Venn Diagrams
- Identify a set notation expression that is equivalent to a two- or three-set shaded Venn diagram
- Solve application problems using Venn Diagrams
- Logic notation including \lor , \land , \sim , \rightarrow , \leftrightarrow , exclusive or
- Be able to construct truth tables
- Determine the validity of an argument
- Prove identities
- Use Logic Gates to determine the truth or falsehood based on inputs and convert to logical notation
- Take sentences in English and rewrite them in logical notation and rewrite logical notation as an English sentence.

Practice Exam questions:

Instructions: Show all work. Use exact answers unless specifically asked to round. Be sure to complete all parts of each problem.

- 1. Let A be the set of letters in the name CAROLINGIAN and let B be set of letters in the name PERPENDICULAR.
 - a. List the elements in set A using proper set notation.

{*C*, *A*, *R*, *O*, *L*, *I*, *N*, *G*}

- b. List the elements in set B using proper set notation. $\{P, E, R, N, D, I, C, U, L, A\}$
- c. Find $A \cap B$.
- d. Find $A \cup B$.

 $\{A, C, D, E, G, I, L, N, O, P, R, U\}$

8

- e. What is the number of elements in set A, i.e. n(A) = |A|?
- f. What is $|A \cup B|$?

12

 $\{A, R, I, C, N, L\}$

g. What is $A' = A^c$?

$\{B, D, E, F, H, J, K, M, P, Q, S, T, U, V, W, X, Y, Z\}$

- 2. Answer the following questions about sets:
 - a. List the elements in the set $C = \{x | x \text{ is an even counting number less than 10}\}.$ $\{2, 4, 6, 8\}$
 - b. List the elements in set $D = \{x | x \text{ is an integer between } -1 \text{ and } 1 \text{ inclusive}\}.$

$$\{-1,0,1\}$$

- c. For each of the following questions, answer TRUE or FALSE.
 - i. $4 \in C$ TRUE
 - ii. $C \cap D = \emptyset$ TRUE
 - iii. $\emptyset \in C$ FALSE

4. For each of the following Venn diagrams, write set notation that describes the indicated set.

- 5. A survey was conducted among 75 patients admitted to a hospital cardiac unit during a twoweek period. Let *B* be the set of patients with high blood pressure, C be the set of patients with high cholesterol levels, and S the set of patients that smoke cigarettes. Fill in the Venn diagram below using the following data, and then use the diagram to answer the questions that follow.
 - The number of patients with high blood pressure was 47
 - The number of patients with high cholesterol was 46
 - The number of patients who smoke is 52.
 - The number of patients who smoke and have high blood pressure is 33
 - The number of patients who both have high blood pressure and high cholesterol is 31
 - The number of patients who have all three conditions is 21
 - The number of patients with at least two conditions is 51
- a. Find the number of patients who had either high blood pressure or high cholesterol, but not both.

11

b. Find the number of patients who had one or none of these conditions.

24

c. Find the number of patients who have none of these conditions.

- 6. Let *p* be the statement "She has green eyes," and let *q* be the statement "Andrew is 91 years old," and *r* be the statement "The cat is lonely." Use this information to translate the following symbolic statements into English sentences.
 - a. $p \land q$ She has green eyes and Andrew is 91 years old.
 - b. $\sim p \rightarrow q$ If she doesn't have green eyes, then Andrew is 91 years old.
 - c. $(p \lor \sim q) \leftrightarrow r$ Only if she has green eyes or Andrew is not 91 years old, then the cat is lonely.
- 7. Construct truth tables for each of the following statements.
 - a. <u>p∧~q</u>

p	q	~q	$p \wedge \sim q$
Т	Т	F	F
Т	F	Т	Т
F	Т	F	F
F	F	Т	F

- b. $(p \rightarrow q) \lor \sim r$ $(p \rightarrow q) \sim r$ q r $p \rightarrow q$ $\sim r$ р Т т F Т Т Т F Т Т Т Т Т Т F F F F Т F F F Т Т Т Т Т F Т Т F F F Т Т Т Т Т Т F Т F F F F Т Т F Т
- 8. Explain in your own words the difference between "inclusive or" and "exclusive or". Inclusive or allows both to be true (true), but exclusive or is false is both are true.
- 9. Find the truth value of the logic gates below using the fact that *A* is True, *B* is False, and *C* is True.

10. Use determine the validity of the following argument. If the argument is invalid, explain why.
A mathematician is a device for turning coffee into theorems.
You turn coffee into theorems.
You are a mathematician.

Invalid. This structure does not guarantee you are a mathematician. You could be another kind of device that turns coffee into theorems. (It would be valid if you switched the last two statements.)