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Simulation 
 
 

Statisticians use simulations built from random variables to model various situations.  In an 
educational context, we can use it to develop a deeper understanding of the way that data 
collection can vary across samples and get a better sense of statistical distributions.  This 
handout will examine statistical simulations using Excel and Minitab.  We will use Excel 
primarily to see behind the scenes for how the simulations work, and then we’ll use Minitab to 
help us automate the process. 
 
Excel has two kinds of random numbers that we can rely on for simulations.  The 
RANDBETWEEN function gives us uniformly distributed integer values.  The RAND() function 
gives a uniformly continuous random number between 0 and 1.  We can use the 
RANDBETWEEN function when we can express the probability as a ratio of integers.  The 
RAND() function can be used regardless of the value of the probability. 
 

 
 
Suppose that we want to simulate the toss of two dice, and then calculate the sum.  The 
RANDBETWEEN function takes two values: the smallest possible integer value the random 
variable can take, and the larges possible integer value the random variable can take.  So, for a 
standard die, the values are 1 and 6.  Since we are tossing two dice, enter the same formula in 
the second column, and then add the values. 
 
To simulate more than one toss, copy the formulas down the columns.  Let’s look at 10 
simulated rolls of both dice. 
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The values you obtain will be different than mine because the outcomes are random. (A word 
of caution, every time a new value is calculated, all the random variables will recalculate. This is 
normal in Excel.) 
 
Now, 10 simulations isn’t that many, and we could do that many without too much trouble 
without technology as long as we had two dice and recorded the results of 10 tosses.  But what 
if we wanted to look at 1000 or 10,000 tosses?  Technology is a lot faster than people, and Excel 
(post 2015 or so) can handle about a million lines in a spreadsheet. 
 
The histogram below is constructed from 2000 tosses. 
 

 
 
We can also run binomial simulations to determine the number of successful outcomes given 𝑛 
trials and 𝑝 probability of success. 
 
Since I want to vary the probability value, I’ll use the RAND() function here.  As noted above, 
this function produces a random value between 0 and 1, the same values as probabilities can 
take on.  If we set 𝑝, the probability of success on each trial, to a given value, we will evaluate 
the random number generated to see if it is less than the given value of 𝑝, or more.  If less, we’ll 
count that as success, and if more, we’ll count that as failure. 
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We use the IF function here to determine if the random number meets the conditions.  The 
syntax requires a condition, the value or expression to be displayed if the condition is satisfied, 
and then the value to be displayed if the condition is not satisfied.  The successes here will be 
listed as 1, and failures as 0.  Here, we are treating the probability as 𝑝 = 0.5, similar to a fair 
coin toss. 
 
If we copy the formula down the first column, we can simulate 20 coin tosses to determine the 
number of heads of a coin we might obtain. 
 

At the bottom of the column, I’ve added up the values 
above to count the number of successes (don’t add the 
header that is just counting the number of 20 tosses). 
 
This is just one set of 20 tosses.  What happens if we ran 
more trials?  We can copy the formulas into other columns 
to see what happens when we make 20 tosses over and 
over again. 
 

 
 
We can see a snapshot of the spreadsheet showing the 

successes and the sum along the bottom.  The histogram below displays the results of 200 
experiments of 20 tosses by their number of successes. The histogram in this case is roughly 
symmetric.  But we might wonder what happens if we change the probability of success on 
each toss?  What if the coin is not fair? 
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If we set the probability of success to 20%, the following histogram is obtained. As you can see, 
it is more right-skewed than symmetric. 
 

 
 
If we set the probability of success to 80%, the following histogram is obtained. As you can see, 
it is more left-skewed than symmetric. 
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As you can see from the spreadsheet, this is based on a lot of calculations that have to be 
repeated over and over.  Minitab makes this much easier to generate data that follows the 
binomial distribution so that we can see what happens if we run multiple simulations, each one 
just as complex as the ones above. 
 
In Minitab, go to the Calc menu, then Random Data, and then select Binomial. 
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The following box pops up. 
 

 
 
The number of experiments to run here is the same number of columns from our spreadsheet, 
200.  Specify the column where you want to store the data, C1.  The number of trials is 𝑛, and 𝑝 
is the event probability.  Here, we will simulate a fair coin. 
 

 
 

 

The data is pasted into the indicated column, which just shows the number of successes.  And if 
we make a histogram, we see that the resulting graph is roughly symmetric. 
 
Let’s test the other two probabilities.  Put 𝑝 = 0.2 in Column C2, and 𝑝 = 0.8 in Column C3. 
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You can see there is a right-skew in the 𝑝 = 0.2 graph, and the values have shifted far to the 
left, while in the 𝑝 = 0.8 graph, the data is left-skewed and the values have shifted far to the 
right. 
 

 
 
We can look at all three on the same graph in Minitab (something we can’t do in Excel). 
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As we increase the number of experiments, and push the probabilities closer to 0 or 1, we can 
enhance the appearance of the skew in the distributions. 
 

 
 

 

Experiment yourself with increasing the number of trials 𝑛 to see how that impacts the shape of 
the resulting distribution.  And you can use these simulations to verify that the mean of the 

binomial distribution is 𝜇 = 𝑛𝑝 and the standard deviation is 𝜎 = √𝑛𝑝𝑞 by calculating these 

stats on the raw data generated. 
 
We can do more simulations with other kinds of distributions, but we’ll leave that for another 
handout. 


