import plotly.express as px
import pandas as pd
df=px.data.gapminder()
df.head(15)
country | continent | year | lifeExp | pop | gdpPercap | iso_alpha | iso_num | |
---|---|---|---|---|---|---|---|---|
0 | Afghanistan | Asia | 1952 | 28.801 | 8425333 | 779.445314 | AFG | 4 |
1 | Afghanistan | Asia | 1957 | 30.332 | 9240934 | 820.853030 | AFG | 4 |
2 | Afghanistan | Asia | 1962 | 31.997 | 10267083 | 853.100710 | AFG | 4 |
3 | Afghanistan | Asia | 1967 | 34.020 | 11537966 | 836.197138 | AFG | 4 |
4 | Afghanistan | Asia | 1972 | 36.088 | 13079460 | 739.981106 | AFG | 4 |
5 | Afghanistan | Asia | 1977 | 38.438 | 14880372 | 786.113360 | AFG | 4 |
6 | Afghanistan | Asia | 1982 | 39.854 | 12881816 | 978.011439 | AFG | 4 |
7 | Afghanistan | Asia | 1987 | 40.822 | 13867957 | 852.395945 | AFG | 4 |
8 | Afghanistan | Asia | 1992 | 41.674 | 16317921 | 649.341395 | AFG | 4 |
9 | Afghanistan | Asia | 1997 | 41.763 | 22227415 | 635.341351 | AFG | 4 |
10 | Afghanistan | Asia | 2002 | 42.129 | 25268405 | 726.734055 | AFG | 4 |
11 | Afghanistan | Asia | 2007 | 43.828 | 31889923 | 974.580338 | AFG | 4 |
12 | Albania | Europe | 1952 | 55.230 | 1282697 | 1601.056136 | ALB | 8 |
13 | Albania | Europe | 1957 | 59.280 | 1476505 | 1942.284244 | ALB | 8 |
14 | Albania | Europe | 1962 | 64.820 | 1728137 | 2312.888958 | ALB | 8 |
fig=px.scatter(df.query("year==1952"),x="gdpPercap", y="lifeExp")
fig.show()
fig=px.scatter(df.query("year==1952"),x="gdpPercap", y="lifeExp", size="pop")
fig.show()
fig = px.scatter(df.query("year==1952"), x="gdpPercap", y="lifeExp", size="pop", log_x=True, size_max=60)
fig.show()
fig = px.scatter(df.query("year==1972"), x="gdpPercap", y="lifeExp", size="pop", color="continent", log_x=True, size_max=60)
fig.show()
fig = px.scatter(df.query("year==1977"), x="gdpPercap", y="lifeExp", size="pop", color="continent",
hover_name="country", log_x=True, size_max=60)
fig.show()
df = px.data.gapminder().query("year == 1982").query("continent == 'Europe'")
df.loc[df['pop'] < 5.e7, 'country'] = 'Other countries' # Represent only large countries
fig = px.pie(df, values='pop', names='country', title='Population of European continent')
fig.show()
df=px.data.gapminder()
fig = px.scatter_geo(df.query("year==2007"), locations="iso_alpha", color="continent",
hover_name="country", size="pop",
projection="natural earth")
fig.show()
df = px.data.gapminder()
fig = px.scatter_geo(df, locations="iso_alpha", color="continent",
hover_name="country", size="pop",
animation_frame="year",
projection="natural earth")
fig.show()
from urllib.request import urlopen
import json
with urlopen('https://raw.githubusercontent.com/plotly/datasets/master/geojson-counties-fips.json') as response:
counties = json.load(response)
import pandas as pd
df = pd.read_csv("https://raw.githubusercontent.com/plotly/datasets/master/fips-unemp-16.csv",
dtype={"fips": str})
fig = px.choropleth_mapbox(df, geojson=counties, locations='fips', color='unemp',
color_continuous_scale="Viridis",
range_color=(0, 12),
mapbox_style="carto-positron",
zoom=3, center = {"lat": 37.0902, "lon": -95.7129},
opacity=0.5,
labels={'unemp':'unemployment rate'}
)
fig.update_layout(margin={"r":0,"t":0,"l":0,"b":0})
fig.show()
df = px.data.election()
geojson = px.data.election_geojson()
fig = px.choropleth_mapbox(df, geojson=geojson, color="Bergeron",
locations="district", featureidkey="properties.district",
center={"lat": 45.5517, "lon": -73.7073},
mapbox_style="carto-positron", zoom=9)
fig.update_layout(margin={"r":0,"t":0,"l":0,"b":0})
fig.show()
fig = px.choropleth_mapbox(df, geojson=geojson, color="Bergeron",
locations="district", featureidkey="properties.district",
center={"lat": 45.5517, "lon": -73.7073},
mapbox_style="open-street-map", zoom=9)
fig.update_layout(margin={"r":0,"t":0,"l":0,"b":0})
fig.show()
df = px.data.iris()
fig = px.scatter_3d(df, x='sepal_length', y='sepal_width', z='petal_width',
color='species')
fig.show()