
MTH 325, Lab #8, Spring 2023  Name ______________________________________ 
 
Instructions: Follow along with the tutorial portion of the lab. Replicate the code examples in R on your 
own, along with the demonstration. Then use those examples as a model to answer the 
questions/perform the tasks that follow. Copy and paste the results of your code to answer questions 
where directed. Submit your response file and the code used (both for the tutorial and part two). Your 
code file and your lab response file should each include your name inside. Be sure to follow the write-up 
directions in the Lab Directions file. 
 
In this lab, we’ll begin to look at time series and their structure in R. We are going to use a couple of 
built-in datasets of varying complexities. For this lab, we’ll look at very basic tasks like graphing and 
differencing. In future labs, we’ll develop our analysis skills a bit further. 
 
The three time series datasets we’ll use in this lab are imported into R below.  
 

 
 
Print out the data set and compare the output to the View() function. 
 

 
 
One thing you should notice when you print out the dataset to the console rather than use View() is that 
time series display their datetime stamps upon print, but don’t display those when you use View(). For 
complex time series data, it can be helpful to just look at a single timestamped numerical variable from 
the data. Pulling out the data column will also pull out the datetime stamp. 
 

 
 
Moreover, as you can see, if there is monthly data, it will be displayed in the form of an array, rather 
than a single list. 
 
We can use the plot() function to obtain a quick graph of the data. This function will automatically place 
Time on the horizontal axis, and the measured numerical variable on the vertical axis. 
 

 
 
Notice that the first three of these plots, there is only one time series plotted, but Seatbelts contains 
multiple plots, and the function plots each time series on a smaller subgraph. 
 
This plot function can be adapted similarly to when we used plot() earlier in the course. 



 
 
Here, I’ve added a title to graph, a new y-axis label and type “b” adds the circles where the observations 
are. 
 
There are also packages that deal directly with time series, with their own plotting functions and analysis 
tools that we’ll use later. The one we’ll look at here is called TSstudio. You’ll need to install it before we 
go on. 
 

 
 
The plotting functions are particular to time series graphs and are built on plotly in the background. 
Some of the graphs can be made interactive. Let’s try out the basic plot on the three single series 
graphs. 
 

 
 
These graphs retain some interactive functions like zoom options. Play around with the interactive 
options that appear on the graph.  We can add additional features if we want, such as a slider bar, as 
well as a title and axis labels. 
 

 
 
The slider is on the bottom, pull the bars from the edges to where you want it and it will narrow the 
range of the larger graph so that you can see more detail. 
 
You can also change other features of the graph, like colors and thickness of the line. 
 

 
 
We can also make other style adjustments like points for observations or dashed lines. 
 

 
 
The ts_plot() function works a little differently than plot() when there are multiple time series.  In the 
default case, it will plot all the time series on a single graph. You can adjust it to “multiple” graphs so 
thee is one for each time series, but this works best when there are fewer series than there is available 
in the Seatbelts dataset. This function will plot all numerical series in the data. 
 

 



We can look at the properties of time series. Some basic elements are shown below. These functions 
give the start time (first observation), end time (last observation), delta-t (period between 
observations), frequency (observations per year), time (prints out decimal equivalents of observations in 
an array), cycle (prints out the observation number per year in an array), and if it’s a time series or not. 
 

 
 
Some aspects of time series analysis requires a time series to be stationary (essentially just random 
noise).  We’ll first simulate white noise to see what a stationary time series looks like. 
 

 
 
You can try rerunning the code a couple times to see different versions of white noise. Since we didn’t 
set a seed, each graph will be a little different. The important thing to note in all these graphs, like our 
residual plots, there should be no pattern, and the mean should be zero (though mean zero need not 
always be the case). 
 
Another kind of basic time series is the random walk. This model arises when errors are correlated 
rather than independent of each other. 
 

 
 
Again, run it more than once to see variations on this model type. The random walk should reduce to 
white noise by finding what is called the first difference: essentially the change between successive 
steps in the time series.  This is a common model of analysis to remove trends from time series data. 
 
We can perform this analysis on our datasets. 
 

 
 
These graphs now look fairly random, so that’s good. It’s less clear that this works on the sunspot data. 
 

 
 
There is a strong seasonal (11-year) component to the sunspot data and it’s not clear to me we’ve 
removed it all.  We can try removing a seasonal component by using a lag as shown below. However, 



we’ll also look at dealing with seasonal decomposition in a future lab. I chose lag=132 since that is 
11 × 12 months, but feel free to experiment with other lags to see if that improves the picture any. 
 

 
 
We can calculate second and third differences as well, as many as necessary to remove any trend.  Just 
apply diff() again to the differences.  Each time you apply it with the default lag=1 you’ll lose one 
observation. If you do a seasonal lag, you’ll lose that many observations, each time.  These differences 
are similar to derivatives since the time series is regularly spaced, which means that first differences can 
remove a linear trend, second differences a quadratic trend, etc. You can apply other transformations 
like log() to eliminate an exponential trend. 
 
In addition to operations specific to time series, we can also do other kinds of analysis on numerical 
variables such as correlations and pair plots when we have more than one time series, histograms, 
boxplots, and qqplots. Some examples are shown below, though this list is not exhaustive. 
 

 
 
Tasks 
 

1. Load the built-in dataset Nile.  Use the time series functions to find the start time, end time, 
time step size, frequency, and confirm that the dataset is a time series.  Create a nice plot of the 
data with labels and other appropriate features. Create some basic numerical plots of the data 
such as a qqplot, histogram and boxplot of the data. Describe what you find. Calculate first 
differences. Is the data stationary? 

 
2. The built-in dataset uspop is for US Population data from the census. Plot the time series in a 

nice graph. You can see that the growth trend is exponential. Apply a log transformation. Then 
replot the data. Calculate and plot first differences until the results are stationary. Discuss how 
many steps were needed. Create exploratory plots of the stationary data. 
 

3. Use the built-in dataset austres for Australian residential data.  Plot the time series in a nice 
graph using different features than previous graphs. This data trend is linear. Calculate and plot 
first differences until the results are stationary. Discuss how many steps were needed. Create 
exploratory plots of the stationary data. 
 

Resources: 
1. https://cran.r-project.org/web/packages/TSstudio/vignettes/Plotting_Time_Series.html 
2. https://rpubs.com/odenipinedo/time-series-analysis-in-R 
3. https://r-coder.com/plot-r/ 
4. http://www.sthda.com/english/wiki/qq-plots-quantile-quantile-plots-r-base-graphs 
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