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Testing Model Assumptions 
So, we’ve built our model. The null hypothesis was rejected: the model is better than none, but does 
that mean it’s an appropriate model?  So, we want to test our model assumptions to see if they hold. 
We want to look for any potential outliers, perhaps, and begin discussing potential ways of repairing our 
models to resolve some of these problems. 
 
Let’s recall our model assumptions. 

• The errors (residuals) are random 

• The errors are normally distributed with a mean of zero and constant variance 

• The model is linear 
 
We will look at outliers in greater detail in a later lecture, but we’ll begin to discuss them here because 
they can have a large impact on our model depending on its location in the data set. They are much 
more significant when we have only a few datapoints, but can still be problematic when we have a lot of 
data. 
 
To test these assumptions on the errors, we are going to construct a residual plot. A residual plot is 
essentially a scatter plot. In a simple linear regression model like this, it is typical to plot the residuals 
against the independent variable. However, sometimes it is useful to plot the residuals against the 
observed dependent variables. We’ll look at both. 
 
Recall that in a previous lecture we had looked at the relationship of the disp(lacement) variable in 
mtcars to the mpg variable. Let’s replot that with displacement on the horizontal axis and mpg on the 
vertical axis. 
 

 



The model doesn’t appear entirely linear to me, but the curve is somewhat shallow so perhaps we could 
make a linear model work well enough. Let’s impose a line on the data and see how the assumptions 
about the errors stack up. 
 

 
 
This graph imposes a line on the data and color-codes the true observations based on their distance 
from the regression line. A potential weakness of our linear model here is that the residuals appear to 
be mostly below the line in the middle, and above the line on either end. This is typical of a curved 
relationship when you impose a line on it.  Let’s look at the residuals alone plotted against the disp 
variable. 
 

 



What we want is to see a random scatter here with no pattern. (imagine a horizontal line through y=0.) 
That does not appear to be what we have. The data appears to curve rather strongly in a kind of U shape 
on the graph.  This means that a linear function is the best fit for this data. 
 
We can confirm another violation we are likely to have by looking at normality plot. 
 

 
This isn’t a great fit to the straight line, suggesting clearly that the residuals are not normally distributed. 
 
What should these features look like? Let’s look at a simulated data set where we are certain that the 
relationship is linear. 
 
Recall an earlier example. 

 



 
If we impose a line on the data and plot the original observations, we can see a very different pattern in 
this graph. The residuals fall on both sides of the graph and relatively evenly. Let’s look then at a residual 
plot. 
 

 



This is the kind of random scatter with zero features that we want from a residual plot.  Let’s check the 
normal probability plot. 
 

 
This is the kind of tight fit to the line we want from normally distributed errors.  This is a good sign that a 
linear model is the correct model for this data, and we’ve met the model assumptions.   
 
We can examine the summary of the fitting procedure to test our model further. 
 
Call: 
lm(formula = Y ~ X, data = dat) 
 
Residuals: 

    Min       1Q   Median       3Q      Max  

-7.8167  -1.9052   0.0075   1.7489  10.9515  

 
Coefficients: 

             Estimate  Std. Error  t value  Pr(>|t|)     

(Intercept)   2.48770     0.95444    2.606   0.00984 **  

X             0.87604     0.04581   19.123   < 2e-16 *** 

--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 2.894 on 198 degrees of freedom 
Multiple R-squared:  0.6487, Adjusted R-squared:  0.647  
F-statistic: 365.7 on 1 and 198 DF,  p-value: < 2.2e-16 
 



Note what is included in this analysis.  The five-number summary on the residuals is here.  There is data 
on the coefficients of our model including the estimate, the standard error for the coefficient, the t-
value and the corresponding P-value.  We talked in the previous lecture about conducting hypothesis 
tests on the slope coefficient, but we can conduct a test on any of the coefficients in the model, 
including the intercept.  At the bottom, we also have a model test (for a simple linear model like this, 
one that is equivalent of the slope test).  Recall that this test is not a test of the linearity of the model (as 
we were using the residual plot for), it’s just a test of whether the relationship is more useful than none 
at all. So, even if the data doesn’t strictly meet the assumptions of linearity and such, the model still may 
be better than the mean. As we develop more models, we’ll be able to select models that fit better than 
the simple linear model and thus, have more predictive power. 
 
We can also use the information in the table on the standard error for each coefficient to construct 
confidence intervals for each coefficient, using t-critical values for our confidence levels and 𝑛 − 2 
degrees of freedom. 
 
We saw an example earlier of a residual plot that told us that the model was not linear (violating an 
assumption of our linear model). Another, even clearer example is below. 

 
 
But this is not the only problem we can spot in a residual graph.  Another problem is shown in the plot 
below. 

 



In this graph, there is a kind of funnel or fluting effect where the residuals on one end of the graph are 
more spread out than the other end.  This problem is called heteroscedasticity. It means that the spread 
or variance of the data is not constant.  It’s larger on one end than the other.  Remember that we 
assumed that the variance was constant. 
 
This particular problem we may be able to repair by performing a transformation of the variables (such 
as taking the log or the square root of one or more variables).  We will look at this in greater detail when 
we examine nonlinear models later in the course.  Some transformations are considered intrinsically 
linear, and these can maintain many features of traditional linear models after applying the 
transformation, including error assumptions and correlation calculations. 
 
The last thing we want to look for in a residual plot is for any potential outliers. 
 

 
 

If you have one (or a small number of) residual(s) that is much larger than all the others, that may be an 
outlier. We’ll look at these more closely in future lectures, but these could be problematic observations 
that we will want to look at more closely. They are potential problems for our model.  As the number of 
observations increases, we will have more of them but they may be less problematic unless they are 
very extreme.  If you look back at our simulated model, there does appear to be one outlier on that 
residual plot, but there are 200 data pairs in that plot, and not a dozen or so in the one just above. 
 
Some statisticians prefer to consider standardized residuals. 
 

 



Essentially, this formula converts all the residuals to their corresponding z-score. This may make it a little 
easier to identify outliers outcomes larger than 2 for unusual values, or extreme outliers if they are 
bigger than 3. This formula also accounts for the position in the data: values closer to the center will 
have a larger denominator and thus a smaller standardized value, compared to values near the edges of 
the data. However, the features we are looking for in the data are not significantly affected by the 
standardization. 
 
The last topic I want to briefly mention is an extension of linear regression called weighted least-
squares. In a traditional least-squares model, all the points in the data set have an equal impact on the 
resulting model. In a weighted least-squares model, we can give more weight to some values than to 
others, so that they have more impact on the resulting regression line than others. For instance, you 
may have data collected from different sources, but think that data from one source is more reliable 
than the others. You can weight the regression model so that those points will dominant the model, 
without having to throw out the other data sources. 
 
We aren’t going to discuss this kind of model in depth, but I’ve linked a couple of sources below if you 
want to learn more about this technique. 
 
In the next lecture, we’ll start looking at multiple linear regression, where we can use more than one 
independent variable to make our predictions. 
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