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ARIMA stands for AutoRegressive Integrated Moving Average, and it is a popular method for modeling 
time series data. 
 
ARIMA models are based on the idea that past values of a time series can help predict future values. The 
model includes three key components: 
 
Autoregression (AR) component: This component models the relationship between an observation and a 
linear combination of its past values. The "p" parameter in ARIMA(p,d,q) refers to the number of past 
values used in the autoregression component. 
 
An AR only model is arima(1,0,0) with one lag. It’s arima(2,0,0) for two lags. 
 
Integrated (I) component: This component models the non-stationarity of the time series by including 
the differences between consecutive observations. The "d" parameter in ARIMA(p,d,q) refers to the 
number of times the time series needs to be differenced in order to make it stationary. 
 
Moving Average (MA) component: This component models the relationship between an observation and 
a linear combination of past errors or residuals. The "q" parameter in ARIMA(p,d,q) refers to the number 
of past errors used in the moving average component. 
 
An MA only model is arima(0,0,1). 
 
Together, these three components make up an ARIMA model. 
 
To use an ARIMA model, you need to determine the appropriate values for p, d, and q. This can be done 
by analyzing the autocorrelation function (ACF) and partial autocorrelation function (PACF) of the time 
series. The ACF and PACF help identify the order of the autoregressive and moving average components 
of the model, respectively. 
 
Once the ARIMA model is fitted to the time series data, it can be used to make forecasts of future 
values. The accuracy of the forecasts can be evaluated using various measures, such as mean squared 
error (MSE) or mean absolute error (MAE). 
 
ARIMA models are widely used in various fields, including finance, economics, engineering, and social 
sciences, to analyze and forecast time series data. 
 
The components of an ARIMA model (p, d, q) can be determined by analyzing the autocorrelation 
function (ACF) and partial autocorrelation function (PACF) of the time series. Here are the steps to 
follow: 
 
Stationarity Check: Check whether the time series is stationary or not. If the time series is non-
stationary, then it needs to be differenced to make it stationary. 
 
Determine the value of d: The number of times the time series needs to be differenced to make it 
stationary is the value of d. If the time series is already stationary, then d=0. 
 



Determine the value of q: Look at the ACF plot and identify the lag at which the autocorrelation is 
significant. The value of q corresponds to the number of lags that are significant in the ACF plot after 
accounting for the effect of differencing. 
 
Determine the value of p: Look at the PACF plot and identify the lag at which the partial autocorrelation 
is significant. The value of p corresponds to the number of lags that are significant in the PACF plot after 
accounting for the effect of differencing. 
 
Finalize the values of p, d, and q: Use the identified values of p, d, and q to build the ARIMA model. 
 
Model Selection: It is recommended to try different combinations of p, d, and q to find the best model 
that fits the data. You can use model selection criteria such as Akaike Information Criterion (AIC) or 
Bayesian Information Criterion (BIC) to compare the performance of different models. 
 
Once the components of the ARIMA model are identified, the model can be fitted to the time series 
data, and forecasts can be generated. 
 
To fit a moving average (MA) model to a time series, we need to follow these steps: 
 
Check Stationarity: Ensure that the time series is stationary or can be made stationary by differencing. 
Determine the value of q: Analyze the autocorrelation function (ACF) of the differenced time series to 
identify the number of significant lags. The value of q corresponds to the number of lags that are 
significant in the ACF plot. 
 
Choose the order of the MA model: The order of the MA model is determined by the value of q. 
Estimate the model coefficients: Use maximum likelihood estimation (MLE) to estimate the model 
coefficients. The MLE method involves finding the set of parameters that maximize the likelihood of 
observing the data. 
 
Model Selection: It is recommended to try different orders of the MA model to find the best model that 
fits the data. You can use model selection criteria such as Akaike Information Criterion (AIC) or Bayesian 
Information Criterion (BIC) to compare the performance of different models. 
 
Model Diagnostic Check: Check the residuals of the fitted model for any patterns or trends. If there are 
any significant patterns in the residuals, then it indicates that the model is not able to capture all the 
information in the data. 
 
Once the MA model is fitted, we can use it to make forecasts of future values of the time series. We can 
also use it to analyze the impact of different factors on the time series by including them as exogenous 
variables in the model. 
 
There are several variations of ARIMA models that can be used to model time series data. Some of the 
common variations are: 
 
Seasonal ARIMA (SARIMA): SARIMA is used for time series data with seasonal patterns. It includes 
seasonal differences in addition to the non-seasonal differences used in ARIMA models. 
 



Vector Autoregression (VAR): VAR models are used when multiple time series variables influence each 
other. In this approach, each variable is modeled as a linear combination of its own lags and the lags of 
other variables. 
 
Bayesian Structural Time Series (BSTS): BSTS is a Bayesian approach for modeling time series data that 
includes trend, seasonality, and other relevant factors. It is a flexible and powerful modeling framework 
that can capture complex patterns in the data. 
 
Exponential Smoothing (ETS): ETS models are used for time series data that exhibit trend and 
seasonality. These models include a smoothing parameter that determines how much weight is given to 
past observations. 
 
Auto-Regressive Conditional Heteroskedasticity (ARCH) and Generalized Autoregressive Conditional 
Heteroskedasticity (GARCH): ARCH and GARCH models are used to model volatility clustering, which is a 
common feature in financial time series. These models allow for the conditional variance of the time 
series to vary over time. 
 
State Space Models (SSM): SSM is a general modeling framework that can be used to model a wide 
range of time series data. It is a flexible and powerful approach that can incorporate multiple sources of 
uncertainty and can handle missing or irregularly spaced data. 
 
These variations can provide greater flexibility in modeling different types of time series data, and can 
help capture specific patterns and features of the data that may not be well suited for the standard 
ARIMA model. 
 
SARIMA, or Seasonal Autoregressive Integrated Moving Average, is a variation of the ARIMA model that 
incorporates seasonality in the time series. 
 
The main difference between SARIMA and ARIMA is that SARIMA includes additional parameters for 
seasonal components. In ARIMA, we use the p, d, and q parameters to model the non-seasonal 
components of the time series, while in SARIMA, we use additional parameters for the seasonal 
components of the time series. 
 
In SARIMA, the parameters are denoted by (𝑝, 𝑑, 𝑞)  ×  (𝑃, 𝐷, 𝑄)𝑚, where m is the number of time 
periods per season. The parameters (𝑃, 𝐷, 𝑄) represent the seasonal AR, differencing, and MA 
components, respectively. 
 
In essence, SARIMA allows us to model the seasonal behavior of the time series, which can be 
particularly useful for forecasting and identifying patterns in data that vary periodically. 
 
VAR, or Vector Autoregression, is a statistical model used in time series analysis to capture the 
relationship between multiple variables. 
 
Unlike ARIMA models, which focus on modeling a single time series, VAR models consider the joint 
behavior of multiple time series variables. The idea behind VAR is to model each variable as a linear 
function of its past values and the past values of the other variables in the system. The model assumes 
that each variable in the system is affected by the past values of all variables in the system, and that the 
variables are mutually dependent. 



 
In a VAR model, we start by specifying the number of lags to include for each variable in the system. We 
then estimate the coefficients of the model using maximum likelihood or another estimation method. 
The resulting model can be used to forecast the values of each variable in the system, as well as to 
analyze the causal relationships between the variables. 
 
VAR models are useful for analyzing and predicting the behavior of complex systems with multiple 
interdependent variables, such as macroeconomic indicators, financial markets, and weather patterns. 
By capturing the dynamic relationships between variables over time, VAR models can provide insights 
into the underlying structure and causal relationships of the system, as well as help to identify key 
drivers of behavior and potential areas for intervention. 
 
We can combine other independent variables with time series data to create a model that accounts for 
the effects of both time and other factors on the outcome variable of interest. This type of model is 
known as a dynamic regression model or an ARIMAX model (ARIMA with eXogenous variables). 
 
The general form of a dynamic regression model is: 
 

𝑌𝑡  =  𝛼 +  𝛽1𝑋1,𝑡  + 𝛽2𝑋2,𝑡 + . . . + 𝛽𝑘𝑋𝑘,𝑡  +  𝜀𝑡  
 
where 𝑌𝑡 is the value of the outcome variable at time 𝑡, 𝑋1,𝑡, 𝑋2,𝑡 , . . . , 𝑋𝑘,𝑡 are the values of the 𝑘 
independent variables at time 𝑡, 𝛽1, 𝛽2, . . . , 𝛽𝑘 are the corresponding coefficients, α is a constant term, 
and 𝜀𝑡 is the error term. 
 
The dynamic regression model allows us to investigate the relationship between the outcome variable 
and the independent variables while accounting for the effects of past values of the outcome variable 
and other time-related factors captured by the ARIMA model. 
 
Including other independent variables in a time series model can improve the accuracy of the forecasts 
by accounting for other factors that may affect the outcome variable. However, it is important to 
carefully select the independent variables and consider potential confounding factors to avoid bias and 
overfitting. 
 
BSTS (Bayesian Structural Time Series) is a flexible and powerful time series modeling framework that 
allows for the inclusion of multiple seasonalities, trends, and other explanatory variables. The model is 
based on Bayesian statistics, which allows for the inclusion of prior knowledge about the parameters 
and hyperparameters of the model. 
 
The basic structure of a BSTS model consists of three main components: 
 
Local level component: This component captures the short-term fluctuations in the time series and is 
modeled using a random walk with Gaussian errors. The variance of the errors can be set to be time-
varying, allowing the model to capture changes in volatility over time. 
 
Seasonal component: This component captures the seasonal patterns in the time series and is modeled 
using Fourier terms. The number of terms can be adjusted to capture multiple seasonal patterns, such as 
weekly and annual cycles. 
 



Trend component: This component captures the long-term trends in the time series and is modeled 
using a polynomial function of time. The degree of the polynomial can be adjusted to capture different 
types of trends, such as linear, quadratic, or cubic. 
 
In addition to these main components, a BSTS model can also include additional explanatory variables, 
such as economic indicators or weather data, as well as intervention variables to capture the effects of 
specific events or policy changes. 
 
The BSTS model is estimated using Bayesian methods, which involve specifying prior distributions for the 
parameters and hyperparameters of the model and updating these distributions based on the observed 
data using Markov Chain Monte Carlo (MCMC) methods. The posterior distributions of the parameters 
and hyperparameters are then used to generate probabilistic forecasts of future values of the time 
series. 
 
Overall, the BSTS model is a powerful and flexible framework for modeling time series data, allowing for 
the incorporation of multiple seasonalities, trends, and other explanatory variables while accounting for 
the uncertainty in the model parameters and forecasts. 
 
It is closely related to gaussian process regression. 
 
ETS stands for Exponential Smoothing State Space Model, and it is a popular method used for time 
series forecasting. 
 
ETS models use a state space framework to represent a time series as the sum of different components, 
such as level, trend, and seasonality. The model updates the estimates of these components using 
exponential smoothing techniques, which weigh recent observations more heavily than past 
observations. 
 
There are several variations of ETS models, each of which incorporates different components and 
smoothing parameters. For example, the "𝐸𝑇𝑆(𝐴, 𝐴𝑑, 𝑁)" model includes additive error, additive trend, 
and no seasonality components, while the "𝐸𝑇𝑆(𝑀, 𝑀, 𝑀)" model includes multiplicative error, 
multiplicative trend, and multiplicative seasonality components. 
 
Once an ETS model is fit to a time series, it can be used to forecast future values of the series. The 
accuracy of the forecast depends on the specific ETS model chosen, as well as the quality and 
predictability of the data being forecasted. 
 
ARCH (Autoregressive Conditional Heteroskedasticity) and GARCH (Generalized Autoregressive 
Conditional Heteroskedasticity) models are used to model and forecast time series data with changing 
volatility over time. 
 
ARCH models assume that the variance of the error term in a time series is a function of the past error 
terms. Specifically, it assumes that the variance of the error term in the current time period depends on 
the square of the error term from the previous time period. In other words, if the previous error was 
large, the current error is expected to be large as well. 
 



GARCH models extend ARCH models by allowing for the conditional variance to depend not only on past 
error terms but also on past variances. This allows for more flexibility in modeling volatility patterns in 
time series data. 
To estimate ARCH and GARCH models, one can use maximum likelihood estimation. Once the models 
are estimated, they can be used to forecast future values of the time series, taking into account the 
changing volatility patterns. 
 
ARCH and GARCH models are commonly used in finance and economics to model the volatility of asset 
returns, such as stock prices or exchange rates. They can also be used in other fields to model time 
series data with changing volatility over time, such as in climate science or engineering. 
 
State space modeling (SSM) is a statistical approach used for analyzing time series data. It models a 
system that is not directly observable but can be observed through a set of measurements. The 
underlying system is represented by a set of unobservable states, and a set of equations defines how 
the system evolves over time. The observations are related to the states by a set of observation 
equations. 
 
In SSM, the goal is to estimate the unobservable states and parameters of the model that best explain 
the observed data. This is done by using a Bayesian framework that combines the information from the 
prior distribution, which represents our knowledge about the states and parameters before seeing the 
data, and the likelihood function, which represents the probability of observing the data given the states 
and parameters. 
 
The estimation of the model parameters and the unobservable states is performed using the Kalman 
filter and the Kalman smoother algorithms. The Kalman filter is used to compute the posterior 
distribution of the states given the observed data, while the Kalman smoother is used to compute the 
posterior distribution of the states and the parameters given the observed data. 
 
SSM is a powerful framework for time series modeling because it can handle a wide range of time series 
data, including those that exhibit nonlinear and non-Gaussian behavior. It is used in many fields, 
including finance, economics, engineering, and physics, to model and forecast time series data. 
 
The Kalman filter is a mathematical algorithm used to estimate the state of a system, based on a 
sequence of noisy measurements. It is commonly used in time series modeling, control systems, 
robotics, and signal processing. 
 
The Kalman filter works by recursively updating an estimate of the state of a system based on 
measurements of the system, taking into account both the uncertainty in the measurements and the 
dynamics of the system. The filter is able to incorporate information from previous measurements and 
predictions to produce a more accurate estimate of the current state. 
 
The Kalman filter is based on the principle of Bayesian inference, which allows for the incorporation of 
prior knowledge and uncertainty into the estimation process. The filter updates the estimate of the 
state of the system and the associated uncertainty based on each new measurement, using a set of 
equations that take into account the dynamics of the system, the measurement noise, and the 
uncertainty in the previous estimate. 
 



One of the key advantages of the Kalman filter is that it is able to provide an estimate of the state of the 
system even when the measurements are noisy or incomplete. It can also handle situations where the 
underlying system is nonlinear, by using an extended version of the filter known as the extended Kalman 
filter. However, the Kalman filter does assume that the system is linear and that the noise in the 
measurements is Gaussian and has a constant variance. 
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