
IT-234 – database

concepts
UNIT 9 – ADVANCED SQL - SECURITY AND TRANSACTION

CONTROL

overview

For example, only HR personnel should
be able to get to employee records and

payroll data.

That data needs to be segmented in
such a way that only those who have

need of the data are allowed to reach it.

In a business setting, there may be
sensitive data.

overview

Salesmen and buyers should
be able to access vendors
and suppliers, but other groups
do not need to know with
whom the company does
business.

Working with the chief
executive officer (CEO) and
chief information officer (CIO),
the database administrator
(DBA) should create these
layers of accessibility in the
database.

overview

One mechanism for
controlling who has

access to data is user
permissions.

This controls
access to

specific tables.

You will learn how to
use Data Control

Language statements
to manage user

permissions.

overview

As you are building
SQL scripts, the work
may become very
complex.

There may be a
need for all the work
to be completed.

The answer is to
wrap the statements
into a transaction.

overview

When defined as a transaction,
the transaction will pass or fail as
a single unit.

When all the statements within a
transaction pass, then you can
COMMIT the transaction.

If anything goes wrong during
execution, then you must
ROLLBACK the transaction.

The Transaction Control
Language commands enable
this functionality.

overview

A database view is
effectively a

predefined query.

You create and use
views most frequently

for the following
security-related

purposes:

Hiding table columns
(for security protection)

Presenting pre-
computed columns (in
lieu of table columns)

Hiding queries (so that
the query outputs are

available without
running the queries)

overview

After completing this unit, you

should be able to:

➢ Use Data Control Language

(DCL) statements that

manage database user

permissions.

➢ Utilize the TCL statements

that manage changes

made by Data Manipulation

Language (DML)

statements.

➢ Generate database views

to help maintain data

confidentiality.

Authentication

and

Authorization

components

SQL Server provides three types
of components for controlling
which users can log onto SQL
Server, what data they can
access, and which operations
they can carry out:

 Principals: Individuals,
groups, or processes granted
access to the SQL Server
instance, either at the server
level or database level.

 Server-level principals
include logins and server
roles.

 Database-level principals
include users and database
roles.

AUTHENTICAT
ION AND
AUTHORIZATI
ON
COMPONENT
S

 Securables: Objects that make
up the server and database
environment. The objects can
be broken into three
hierarchical levels:

 Server-level securables
include databases and
availability groups.

 Database-level securables
include schemas and full-
text catalogs.

 Schema-level securables
include tables, views,
functions, and stored
procedures.

AUTHENTICATION AND
AUTHORIZATION COMPONENTS

 Permissions: The types of access permitted to

principals on specific securables.

 You can grant or deny permissions to

securables at the server, database, or

schema level.

 The permissions you grant at a higher level

of the hierarchy also apply to children and

grandchildren objects, unless you

specifically deny those permissions at the

lower level.

SQL SERVER AUTHENTICATION methods

Microsoft SQL Server database
connections can be through

Windows Authentication or SQL
Server Authentication, which

entails a login with a username
and password.

Windows Authentication doesn't
require a username and

password because Windows and
SQL Server automatically

recognize the current operating
system user and grants them the
permissions that are assigned to

that user.

SQL SERVER
AUTHENTICATION
methods

Windows

authentication

Windows Authentication means
the account resides in Active
Directory (AD) for the Domain.

SQL Server knows to check AD to
see if the account is active,
password works, and then checks
what level of permissions are
granted to the single SQL server
instance when using this account.

Windows

authentication

This helps with account
management since the
account and password
only need to be defined
once.

You can enforce your
company’s security
policies on the account
(Password complexity,
password expiration, etc.).

Windows
authentication

 In Windows
Authentication
mode, you are
using SQL
Server from the
same
computer
where it is
installed

 SQL Server
doesn't ask for
username and
password as
shown below.

SQL SERVER

AUTHENTICATION

SQL Server Authentication means
the account resides in the SQL
server master database but
nowhere on the Domain.

The username and password are
stored in the master database.

If this account needs to access
more than one SQL Server
instance, then it has to be
created on each instance.

SQL SERVER
AUTHENTICATION

 An instance of
SQL Server can
have multiple
user accounts
with various
usernames and
passwords.

 In a shared
environment
different users
have different
access on
different
databases, so
SQL Server
Authentication
should be used.

SQL SERVER

AUTHENTICATION

– Create login

Logins are used at the Instance
level and Users are used at the
Database level.

T-SQL Syntax:

CREATE LOGIN <login_name> WITH
PASSWORD='<password>',
DEFAULT_DATABASE =

MASTER, DEFAULT_LANGUAGE
= US_ENGLISH;

SQL
SERVER
AUTHENT
ICATION
–
CREATE
LOGIN

Example:

USE MASTER;

GO

CREATE LOGIN WillSmith WITH

PASSWORD='P@$$w0rd',

DEFAULT_DATABASE = MASTER,

DEFAULT_LANGUAGE =

US_ENGLISH

GO

;

SQL SERVER

AUTHENTICATION

– Create USER

The CREATE USER statement
creates a database user to log
into SQL Server.

A database user is mapped to a
Login, which is an identity used to
connect to a SQL Server instance.

T-SQL Syntax:

• CREATE USER <user_name>

• FOR LOGIN <login_name>;

SQL
SERVER
AUTHENT
ICATION
–
CREATE
USER

Example:

USE BikeStores;

GO

CREATE USER Will

 FOR LOGIN WillSmith;

GO

Data control language

The Data Control Language is a subset of the
Structured Query Language.

Database administrators use DCL to configure
security access to relational databases.

It complements the Data Definition Language,
which adds and deletes database objects, and
the Data Manipulation Language, which retrieves,
inserts, and modifies the contents of a database.

Data

control

language

 Examples of DCL commands:

➢ GRANT - gives user’s access

privileges to the database.

➢ REVOKE - withdraw user’s

access privileges given by

using the GRANT command.

➢ DENY - prevents a user from

receiving a particular

permission.

Data

control

language

 The GRANT command adds new
permissions to a database user.

➢ It has a very simple syntax,
defined as follows:

 Privilege - can be either the
keyword ALL (to grant a wide
variety of permissions) or a
specific database permission or
set of permissions

➢ Examples include CREATE
DATABASE, SELECT, INSERT,
UPDATE, DELETE, EXECUTE
and CREATE VIEW.

Data control language

Object - can be any database
object.

The valid privilege options vary based on
the type of database object you include
in this clause.

Typically, the object will be either a
database, function, stored procedure,
table or view.

User - can be any database
user.

You can also substitute a role for the user
in this clause if you wish to make use of
role-based database security.

Data control language

 If you include the optional WITH GRANT OPTION

clause at the end of the GRANT command, you

not only grant the specified user the permissions

defined in the SQL statement but also give the user

permission to further grant those same permissions

to other database users.

➢ For this reason, use this clause with care.

Data

control

language

Example:

➢ Assume you wish to grant the user Joe the ability to
retrieve information from the employees table in a
database called HR.

➢ Use the following SQL command:

➢ Joe can retrieve information from employees

➢ He will not, however, be able to grant other users
permission to retrieve information from that table
because the DCL script did not include the WITH
GRANT OPTION clause.

Data

control

language

 The REVOKE command removes database
access from a user previously granted such
access.

➢ The syntax for this command is defined as
follows:

 Permission - specifies the database permissions
to remove from the identified user.

➢ The command revokes both GRANT and
DENY assertions previously made for the
identified permission.

Data

control

language

Object - can be any
database object.

• The valid privilege options vary
based on the type of database
object you include in this clause.

• Typically, the object will be either
a database, function, stored
procedure, table, or view.

User - can be any
database user.

• You can also substitute a role for
the user in this clause if you wish to
make use of role-based database
security.

Data

control

language

The GRANT OPTION FOR clause
removes the specified user's
ability to grant the specified
permission to other users.

• If you include the GRANT OPTION FOR
clause in a REVOKE statement, the
primary permission is not revoked.

• This clause revokes only the granting
ability.

The CASCADE option also
revokes the specified permission
from any users that the specified
user granted the permission.

Data

control

language

Example:

➢ The following command revokes
the permission granted to Joe in

the previous example:

Data control language

The DENY command
explicitly prevents a user

from receiving a particular
permission.

This feature is helpful when a
user is a member of a role or

group that is granted a
permission, and you want to
prevent that individual user

from inheriting the permission
by creating an exception.

Data control language

The syntax for the DENY command

is as follows:

The parameters for the DENY

command are identical to those

used for the GRANT command.

Data

control

language

Example:

➢ If you wished to ensure that
Matthew would never receive the

ability to delete information from

the employees table, issue the

following command:

DATABASE roles

A database role is a group of users that share a common
set of database-level permissions.

SQL Server supports both fixed and user-defined
database roles.

To set up a user-defined database role, you must create
the role, grant permissions to the role and add members
to the role (or add members and then grant permissions).

The permissions assigned to the fixed-database roles
cannot be changed

Fixed DATABASE roles

db_owner – can perform
all configuration and

maintenance activities
on the database

db_securityadmin – can
modify role membership
for roles that have been

created by an
administrator or another
user (user-defined roles)

db_accessadmin – can
add or remove access

to the database for
Windows logins and

groups

db_backupoperator –
can back up the

database

db_ddladmin – can run
any DDL command in a

database

db_datawriter – can
add, delete or change
data in all user-defined

tables

db_datareader – can
read all data from user-

defined tables

db_denydatawriter –
users cannot add,

modify or delete any
data in user-defined

tables

db_denydatareader –
users cannot read any
data in user-defined

tables

User-

defined

DATABASE

roles

creating

roles

Role creation syntax:

•CREATE ROLE
<role_name>;

Examples:

•CREATE ROLE
GeneralUser;

•CREATE ROLE
Salesperson;

User-defined

DATABASE

roles

Granting

permissions

 The syntax for granting/revoking
role privileges in SQL Server is:

GRANT <privileges> ON

<object> TO <role>;

REVOKE <privileges> ON

<object> FROM <role>;

 Examples:

GRANT SELECT

 ON Sales.Customers TO

GeneralUser;

GRANT SELECT, INSERT, UPDATE,

DELETE

 ON Sales.Customers TO

Salesperson;

User-defined

DATABASE

roles

ADDING

MEMBERS

 The syntax for assigning roles to
users in SQL Server is:

 ALTER ROLE <role>

 ADD MEMBER <user>;

 Examples:

 ALTER ROLE GeneralUser

 ADD MEMBER Will;

 ALTER ROLE Salesperson

 ADD MEMBER Vanessa;

User-defined

DATABASE

roles

removing

members

 The syntax for assigning roles to
users in SQL Server is:

 ALTER ROLE <role>

 DROP MEMBER <user>;

 Examples:

 ALTER ROLE GeneralUser

 DROP MEMBER Will;

 ALTER ROLE Salesperson

 DROP MEMBER Vanessa;

transaction

control

language

A transaction is a unit of
work that is performed
against a database.

Transactions are units or
sequences of work
accomplished in a logical
order, whether in a manual
fashion by a user or
automatically by some sort
of a database program.

transaction control language

A transaction is the
propagation of one or
more changes to the

database.

For example, if you are
creating a record or
updating a record or

deleting a record from the
table, then you are

performing a transaction
on that table.

transaction control language

It is important to control these transactions
to ensure the data integrity and to handle
database errors.

Practically, database users will combine
many SQL queries into a group and will
execute all of them together as a part of a
transaction.

transaction

control

language

 Transactions have the

following four standard

properties, usually referred to

by the acronym ACID.

➢ Atomicity − ensures that all

operations within the work

unit are completed

successfully. Otherwise, the

transaction is aborted at the

point of failure and all the

previous operations are

rolled back to their former

state.

transaction

control

language

Consistency − ensures that the
database properly changes
states upon a successfully
committed transaction.

Isolation − enables transactions
to operate independently of
and transparent to each other.

Durability − ensures that the
result or effect of a committed
transaction persists in case of a
system failure.

transaction

control

language

Transaction Control
Language (TCL)

commands deal with
the transaction within

the database.

Examples of TCL
commands:

COMMIT – commits a
transaction.

ROLLBACK – rollbacks a
transaction in case of

any error occurs.

SAVEPOINT – sets a
save point within a

transaction.

SET TRANSACTION –
specify characteristics

for the transaction.

	Slide 1: IT-234 – database concepts
	Slide 2: overview
	Slide 3: overview
	Slide 4: overview
	Slide 5: overview
	Slide 6: overview
	Slide 7: overview
	Slide 8: overview
	Slide 9: Authentication and Authorization components
	Slide 10
	Slide 11
	Slide 12: SQL SERVER AUTHENTICATION methods
	Slide 13: SQL SERVER AUTHENTICATION methods
	Slide 14: Windows authentication
	Slide 15: Windows authentication
	Slide 16: Windows authentication
	Slide 17: SQL SERVER AUTHENTICATION
	Slide 18: SQL SERVER AUTHENTICATION
	Slide 19: SQL SERVER AUTHENTICATION – Create login
	Slide 20
	Slide 21: SQL SERVER AUTHENTICATION – Create USER
	Slide 22
	Slide 23: Data control language
	Slide 24: Data control language
	Slide 25: Data control language
	Slide 26: Data control language
	Slide 27: Data control language
	Slide 28: Data control language
	Slide 29: Data control language
	Slide 30: Data control language
	Slide 31: Data control language
	Slide 32: Data control language
	Slide 33: Data control language
	Slide 34: Data control language
	Slide 35: Data control language
	Slide 36: DATABASE roles
	Slide 37: Fixed DATABASE roles
	Slide 38: User-defined DATABASE roles creating roles
	Slide 39: User-defined DATABASE roles Granting permissions
	Slide 40: User-defined DATABASE roles ADDING MEMBERS
	Slide 41: User-defined DATABASE roles removing members
	Slide 42: transaction control language
	Slide 43: transaction control language
	Slide 44: transaction control language
	Slide 45: transaction control language
	Slide 46: transaction control language
	Slide 47: transaction control language

