
Lecture 3 
 
Simple Linear Regression 
We’ve spent our first couple of lectures talking about the relationship between variables in different 
ways using correlation, linearity and other factors. Now, we want to begin to develop models of the 
data. What if we have an observation of one of the variables not in our original data set? How do we use 
the information on the relationship between the variables to predict what the observation of the other 
variable is most likely to be? Or provide a range of such values? To begin to do this, we need to generate 
a model equation. We’ll start with the simplest case of a linear equation that depends on only one other 
variable. We’ll look at this in some detail in the coming weeks and then extend to other scenarios: 
multiple variables, non-linear models, categorical variables, and so on. 
 
Our linear model is going to take the form 
 

𝑦 = 𝛽0 + 𝛽1𝑥 + 𝜖 
 
We will estimate this model by finding the descriptive linear model that best fits the data: 
 

𝑦̂ = 𝑏0 + 𝑏1𝑥 
 
The “hat” notation is to indicate that this is an estimate. You can see that we follow the Greek letter for 

the parameter and the English/Latin letter for the descriptive statistic or the estimate, i.e. 𝑏𝑖 = 𝛽̂𝑖, the 
coefficients in the model are estimates for the model parameters.  The 𝜖 in the inferential model is the 
error.  It is assumed to have a mean of zero and a constant standard deviation.  We’ll discuss below how 
we estimate the standard deviation of these errors. 
 
A note on terminology. The 𝑥 variable in the model is the “input” variable. It may be referred to as the 
independent variable, the explanatory variable or the predictor variable.  In practice, this variable may 
occur first in time, it may be presumed to be causal, or it may just be easier to measure.  While 
causation may be a factor in our models, it is not required. You’ve often heard the phrase “correlation 
does not equal causation”. Causation has to be established through experiment or other means, but 
while we can use causation to identify our explanatory variable if it is available, we do not depend on it. 
You may also hear it referred to as a “proxy” for the 𝑦 variable. 
 
The 𝑦 variable may be referred to as the dependent variable, the response variable or the prediction. 
This may occur later in time than the explanatory variable, it may be caused by the independent 
variable, or it may simply be more difficult to measure. We can think of it in function terms as the 
output variable. 
 
When we plot these variables on a scatterplot, the order does not matter to detect correlation, but it 
does matter when we build a model. The independent variable should go on the horizontal axis, and the 
dependent variable, the predicted variable, goes on the vertical axis. 
 
To indicate observational pairs, we subscript the variables. One pair of observations is (𝑥𝑖 , 𝑦𝑖). When 
creating our scatterplots, we generally are concerned about the relationship of the variables to each 
other, so we should remove any white space from the graph so that the observed values take up the 
entire graph. Unlike bar graphs, it's not necessary to start at zero. 
 



Let’s look at one of our simulated examples and construct a model of the variables. 
 

 
 
We can see that the data represented by X and Y have a positive linear relationship with a relatively 
strong correlation. If we try to draw a curve through the middle of data, it will be a straight line with a 
positive slope. 
 
If we think of the straight line 𝑦 = 𝛽0 + 𝛽1𝑥 as the true regression line, then the 𝜖’s are the errors or 
deviations from that line. 
 

 
 



These errors are commonly referred to as residuals. We can estimate their values from the estimation of 
the line we generate. In other words,  
 

𝜖 = 𝑦𝑖 − 𝑦̂𝑖  
 
Where 𝑦̂𝑖 = 𝑏0 + 𝑏1𝑥𝑖 from our estimated regression equation.  Our goal is to find values for 𝑏0 and 𝑏1 
that make the squares of the 𝜖’s as small as possible.  This is the source of the name least squares 
regression. 
 
Using calculus, we can minimize the sum of the squares ∑𝜖2, by replacing our expressions for epsilon in 
terms of our equations and 𝑥𝑖 and 𝑦𝑖, and then set the derivative with respect to the two variables 𝑏0 
and 𝑏1 equal to zero. Then we solve the system to obtain formulas for 𝑏0 and 𝑏1 that produce the 
minimum. (The critical point must be a minimum since there can’t be a maximum.) 
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We can rearrange these to obtain. 
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Solving for 𝑏1 and 𝑏0, we get 
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𝑏0 = 𝑦̅ − 𝑏1𝑥̅ 

 
It turns out the calculus solution and the linear algebra solution produce the same results.  Consider that 
we are trying to find the best-fit equation 𝑦 = 𝑏0 + 𝑏1𝑥 to a set of observations.  Let’s say the pairs 
{(1,5), (2,6), (3,8), (4,11)}.  We set up a set of linear equations by replacing 𝑥 and 𝑦 in the equation 
with 𝑏0 and 𝑏1. 



 
𝑏0 + 𝑏1(1) = 5 
𝑏0 + 𝑏1(2) = 6 
𝑏0 + 𝑏1(3) = 8 
𝑏0 + 𝑏1(4) = 11 

 
We can’t solve this system exactly, but we can convert it into a matrix form with A being the coefficient 
matrix and 𝑌 being the constant vector, and 𝐵 being the unknown coefficients. 
 

𝐴𝐵 = 𝑌 
 

𝐴 = [

1 1
1 2
1 3
1 4

] , 𝐵 = [
𝑏0
𝑏1
] , 𝑌 = [

5
6
8
11

] 

 
To solve this for the best estimate we multiply the equation by 𝐴𝑇. (The reasoning for this is deep in 
linear algebra, so for now we will just worry about the procedural side.) 
 

𝐴𝑇𝐴𝐵 = 𝐴𝑇𝑌 
 
It turns out that in most cases, 𝐴𝑇𝐴 will not only be a square matrix but also one that is invertible, so 
that we can solve for it. 
 

𝐵 = (𝐴𝑇𝐴)−1𝐴𝑇𝑌 
 
Is the solution to the system in matrix form. It turns out that 𝐵 is a vector of our estimates for 𝑏0 and 𝑏1 
and if we break out the formulas for the components from the matrix operations, we obtain the same 
formulas for the coefficients that we did above from calculus. 
 
The linear algebra approach has significant advantages. For one thing, we can use the same procedure 
for almost all systems of equations, and linear algebra can construct workarounds for systems that don’t 
meet the usual requirements for our matrices (for instance, if 𝐴𝑇𝐴 turns out not to be invertible). The 
calculus approach will require separate equations for every possible type of solution with multiple 
variables, nonlinear approaches, etc. The linear algebra approach is much more compact, and 
computers work with arrays rather easily, so the linear algebra approach is very easy to encode. It’s far 
more likely that your computer is using the linear algebra approach than going through the raw 
summation formulas. 
 
There are sources in the reference list that go deeper into the linear algebra approach to finding these 
coefficients. 
 
If we solve the small example above for the best-fit line we get 
 

𝑦 = 2𝑥 + 2.5 
 
How do we interpret this equation? Essentially, this equation is an estimate of the population true 
regression line. The prediction from the equation can be best viewed as an estimate of the mean 



observed y-value. If we were to observe 𝑦 at the same value of 𝑥 several times, we’d expect the mean of 
those observations to agree with our prediction.  Those observations will be normally distributed around 
the mean value that sits on the estimated regression line. 
 

 
 
The meaning of the y-intercept of the equation is the mean value of 𝑦 when 𝑥 = 0, however, it will 
depend on the data as to whether or not the model is even meaningful at 𝑥 = 0.  For instance, if 𝑥 is 
years, no model is likely to work going back in time over 2000 years. In some applications, this value may 
be negative, in which case, it may not have any physical meaning, for instance, if you are measuring 
heights. So, interpret with care. 
 
We also want to be able to interpret the slope.  We should do this in context. In general, the slope is a 
rate.  It’s the rate that 𝑦 changes relative to 𝑥. For instance, if 𝑥 changes by 1, then the 𝑦 value changes 
(on average) by the value of the slope. So, perhaps our measurements are the height of a tree in each 
year after planting. Then we would say that the tree grows on average 2.5 feet per year. 
 
Because the predictions are the expected means of outcomes, we can construct prediction intervals 
around the mean, similar to confidence intervals, but we will use the standard error (standard deviation) 
of the residuals to construct it.  We can estimate it with just that, but a more sophisticated construction 
includes the distance from the mean of the data, where are estimates are the most accurate. As you 
move towards the edge of the data, the potential variability increases as the slope of the line is itself an 
estimate and the swing of the slope changes the most at the ends. 
 

 



We could construct a bootstrap simulation of our regression data and predict the regression line from 
each version. We’d get similar, but not identical results. The biggest differences would be on the 
endpoints. 
 
The exact formula we can use for the confidence interval depends on the standard error of the residuals 
in place of the standard error of the sampling distribution. 
 

 
 
In most cases, the second term under the radical is small, and so sometimes we can ignore it, and just 
use the standard error of the residuals divided by the square root of n, where n is the number of 
observations used to obtain the mean. But, as you get further from the mean of 𝑥, this value gets bigger 
and increases rapidly outside the range of the data.  This is one of the reasons why it is best to avoid 
extrapolation (predicting values outside the range of the original data), and because we can’t be sure 
that the trend continues. (Interpolation is when we predict values inside the range of the data.) 
 
When building your confidence interval with the t-distribution, the degrees of freedom is 𝑛 − 2; it’s 2 
because we’ve estimated two parameters, 𝑏0 and 𝑏1. 
 
We can plot both the line and the prediction margins in the graph of our data. 
 

 
You can see how they get wider on the ends. 



One difficulty with the way that we calculate these estimates is how much of this data is outside the 
confidence bounds. Thus, how we interpret these error bounds is important. This confidence interval is 
smaller than the prediction interval. 
 

 
 
The prediction interval has an extra +1 under the radical so that it is more similar to the residual error 
(and therefore wider), and not narrower for a prediction made repeatedly at a single observation. 
 
As we saw with correlation, we can conduct hypothesis testing on our model, both of the model broadly 
and the model parameters, especially slope.  Testing the slope in a simple linear model is essentially 
equivalent to testing the model overall, and testing the correlation.  Generally, we test the slope 
compared to zero, to determine if the model has any value at all (no relationship is equivalent to zero 
correlation). 
 

𝐻0: 𝛽1 = 0 
𝐻𝑎: 𝛽1 ≠ 0 

 
Are the default tests, although, we can test against specific parameter values, for example, if we wanted 
to slope to be larger than 1, we can modify our procedure accordingly. 
 
To conduct the test, we need and standard error value for the slope parameter specifically. 
 

𝑠𝛽1 =
𝑠

√𝑆𝑥𝑥
 

 
(Recall that 𝑆𝑥𝑥 = ∑(𝑥𝑖 − 𝑥̅)2 or another equivalent formulation.) 
 
Our test statistic then becomes 
 

𝑇 =
𝛽1 − 𝛽10

𝑠𝛽1
 

 
We use 𝑛 − 2 degrees of freedom to find the P-value. We can use this same standard error to construct 
a confidence interval on the slope. 
 
Regression and ANOVA are closely related ideas and we’ll say more about this in later lectures. For now, 
we’ll just note that ANOVA tables are frequently included in regression analysis output. They should be 
interpreted as a test of the overall model. For now, this equivalent to testing the slope parameter or 



correlation, but as we extend to multivariable problems, it will take on more of the character of 
traditional ANOVA, only saying that at least one of the model parameters is meaningful. 
 

 
 
In the next lecture we’ll look more closely at the residuals and model diagnostics, checking our 
assumptions and other tools to assess the quality of our models. 
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