
Lecture 6 
 
Dimensional reduction – Parsimonious model selection strategies 
If you have a lot of possible variables to include in your model, how do you know which variables to 
include in your model? One? All of them? A subset?  If you only include one variable, you might not get 
the best predictive power out of the available data. If you include too many variables, you might end up 
overfitting your data: you might be able to predict the data you have very well, but it will be deceptive 
and you may have unexpectedly poor predictions for new observations. If you have a lot of variables, 
your model might be unnecessarily complex, with some variables in the model not contributing much to 
the predictive power. Recall our principle of parsimony: we want the best predictive power for the 
simplest model necessary. There is a trade-off we want to make between avoiding complexity and the 
best predictions without overfitting. How do we strike this balance? 
 
There are several strategies we can apply to this problem. We’re going to first address some old-school 
methods that take advantage of some of the things we have already discussed. Then we’ll examine 
some newer methods that take advantage of technology, some penalized regression approaches, and 
linear algebra techniques.  We won’t be able to cover all possible methods in this one lecture, but we’ll 
discuss one or two strategies in detail, and then highlight some others that you can implement in R.  
References for all methods will be included in the reference list at the bottom of the notes for further 
investigation. 
 
Let’s start with the strategy called backward selection.  In this approach to regression, we apply all the 
variables available to us to a model. And then we begin to remove variables one at a time that fail to be 
significant until we are left with a model that has only significant variables. 
 
Forward selection works similarly, but you begin with just a single variable, and then add variables one 
at a time, discarding if they are not significant, until you’ve considered all the possible variables.  These 
methods are somewhat similar, but they don’t necessarily produce the same model in the end. The 
order in which variables get added or subtracted from a model may change which variables end up 
being retained.   
 
You can also do a mixed model, where you can either add or subtract variables. Perhaps after doing a 
correlation table. This strategy is less methodical but may allow you to short-cut the full backward or 
forward selection if you make some wise initial choices. 
 
Let’s work through a backward selection approach. We will focus on the statistics tests of the 
coefficients in our regression analysis.  We will omit analyses for outliers and testing of other factors for 
the sake of having a clean backward selection example, but keep in mind that these other assumptions 
are still relevant, still apply, and their analysis will still have to be done at some point. 
 
Let’s look at a data set on fertility in the MASS package. After loading the data, we can create a model 
using all the available data in dataset, a full model.  The results of a multiple linear regression analysis is 
shown below. 
 
Call: 
lm(formula = Fertility ~ ., data = swiss) 
 
Residuals: 



     Min       1Q   Median       3Q      Max  
-15.2743  -5.2617   0.5032   4.1198  15.3213  
 
Coefficients: 

                  Estimate  Std. Error  t value  Pr(>|t|)     

(Intercept)       66.91518    10.70604    6.250  1.91e-07 *** 

Agriculture       -0.17211     0.07030   -2.448   0.01873 *   

Examination       -0.25801     0.25388   -1.016   0.31546     

Education         -0.87094     0.18303   -4.758  2.43e-05 *** 

Catholic           0.10412     0.03526    2.953   0.00519 **  

Infant.Mortality   1.07705     0.38172    2.822   0.00734 **  

--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 7.165 on 41 degrees of freedom 
Multiple R-squared:  0.7067, Adjusted R-squared:  0.671  
F-statistic: 19.76 on 5 and 41 DF,  p-value: 5.594e-10 
 
In this case, one of the variables is above the 0.05 significance level, Examination.  So we conclude that 
we don’t have the evidence to think that this variable coefficient is not zero. Therefore we can eliminate 
it from the model.  We would then rerun the model without this variable. 
 
Call: 
lm(formula = Fertility ~ . - Examination, data = swiss) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-14.6765  -6.0522   0.7514   3.1664  16.1422  
 
Coefficients: 

                  Estimate  Std. Error  t value  Pr(>|t|)     

(Intercept)       62.10131     9.60489    6.466  8.49e-08 *** 

Agriculture       -0.15462     0.06819   -2.267   0.02857 *   

Education         -0.98026     0.14814   -6.617  5.14e-08 *** 

Catholic           0.12467     0.02889    4.315  9.50e-05 *** 

Infant.Mortality   1.07844     0.38187    2.824   0.00722 **  

--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 7.168 on 42 degrees of freedom 
Multiple R-squared:  0.6993, Adjusted R-squared:  0.6707  
F-statistic: 24.42 on 4 and 42 DF,  p-value: 1.717e-10 
 
If we are using the significance level of 0.05, then we are done, and we can report our final model. If we 
wanted to use a 0.01 level of significance, then we could take another step and remove the Agriculture 
variable as well. 
 



Notice from the 𝑅2 values from the two models, we didn’t lose much value here going from 70.67% to 
just 69.93%, which is less than a percent of explanatory value, and the adjusted 𝑅2 was an even smaller 
change. 
 
If you have a lot of variables, this can take some time. But you can’t necessarily know from the start 
which strategy will be most effective, whether you will only include one or two variables, or whether 
you will include most of them. In general, especially if applying a mixed strategy, don’t add or subtract 
more than one variable at a time. It’s hard to deal with the possibility of collinearity if you take large 
leaps like this. 
 
Another strategy which can be implemented by hand, but which is much easier with technology is the 
best subset strategy. In this strategy you consider all possible combinations of variables.  For instance, if 
you have 5 variables, you would have to look at the full model with all five variables, the five possible 
models with 4 variables, the 10 models with three variables, the 10 models with 2 variables, the five 
models with just one variable (and technically also the one model with no variables). You would then 
compare all the models to choose the one that is the best fit of all these 32 possible models.  (In general, 

if there are 𝑘 variables, there are 2𝑘 models to consider.)   The number of models to test can become 
quite large as the number of variables increases.  Fortunately, there is a package in R that can do this 
analysis for you and from which you can extract the best model. 
 
The best subset strategy may also produce a model you would not necessarily have found using the 
forward or backward selection approaches because those approaches doesn’t consider every possible 
model. 
 
Another strategy to avoid overfitting of models, particularly when you have a lot of data is to set aside 
some of the data you have (generally around 20% of it, though this can vary). Build your initial model, 
select variables on the 80% that remains, and then test the model on the part you set aside. This allows 
you a kind of cross validation that permits you see how your model will behave on data it has not seen 
before.  In such cases you will want to compare the errors on the model and on the test set to see if they 
are similar (this is often done with root mean square error or similar measurements). If the errors are 
similar, then the model is not overfit. If the errors on the test set are much larger, then this is a sign of 
overfitting.  In the end, you would want to construct your final model on all the available data, but this 
intermediate testing phase is done to provide insights you can’t get when you use all the data to start 
with. 
 
A strategy for reducing the dimensionality of a model that depends on linear algebra is called principal 
component analysis (regression) or PCA. This is beyond the linear algebra we have, but essentially it 
depends on finding the eigenvalues and eigenvectors of our matrix, which is a combination of (possibly) 
all our variables in certain proportions.  We can then select those principal combinations of components 
that have the biggest impact on our model and drop the rest. A course on data science or advanced 
linear algebra class will generally cover this approach. 
 
There are also strategies for calculating penalized regression in R in a variety of ways that help restrict 
the variables included in our model. These include AIC (Akaike information criterion), BIC (Bayesian 
information criterion), Ridge regression, LASSO (Least Absolute Shrinkage and Selection Operator), 
Elastic Net, and others.  Some of the packages that assist in automating stepwise regression (forward or 
backward) in R, use AIC or BIC as cut-off criteria.  Sources linked below go into these methods in greater 



detail.  Typically, advanced courses on regression or data mining will cover these methods in greater 
detail. 
 
Review for Exam #1 
The format of the exam will be the same as the exams from last semester. You will have some data to 
take home and analyze, and then you’ll answer some questions about that analysis during class. And 
then there will be some questions that you will have to answer only in class. For example, I might 
produce the R analysis or graphs for you and ask you to interpret those things without being able to 
refer to your notes. 
 
Topics to focus on: 

• Pearson correlation interpretation, relationship to coefficient of determination and slope 
coefficient 

• Spearman’s and Kendall’s Tau interpretation 

• Coefficient of determination interpretation 

• Interpretation of slope and intercept in the context of a problem 

• Be able to conduct model tests, correlation tests, and coefficient hypothesis tests from R output 

• Identifying strength of correlation 

• Using scatterplots to determine if linear regression is appropriate 

• Checking model assumptions using residual plots 

• Selection methods (forward, backward, stepwise, best subset, etc.) (be able to use them at 
home, describe the process in class) 

• Outlier detection methods 

• The difference between an influential point and an outlier 

• Use the normal equations to solve a small regression example 

• Use calculus to find covariance of a distribution 

• Confidence and prediction intervals 
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