
Lecture 7 
 
Go over Exam #1 
 
ANOVA as a general linear model 
Last semester, we spent several lectures looking at ANOVA, and when we started looking at regression 
this semester, we talked about some of the similarities between ANOVA and regression analysis in terms 
of the structure of the hypotheses and other factors. We want to look at this a little bit more closely 
now in preparation for extending our linear models to nonlinear ones, and other elements that we can 
add to our simple regression models. 
 
Both ANOVA and regression are models that compare two or more variables to each other. One value is 
the response variable that we are trying to predict, and other variables are the variables we are the 
explanatory variables we are using to perform the predictions. The one significant difference between 
regression and ANOVA is that in regression, we treat all variables as numerical values, whereas in 
ANOVA, we treat all explanatory variables as categorical variables. Even when we had numerical values 
for the explanatory variables, we treated these as fixed levels, and not as being along a continuity. 
 
Recall that the predictive model for ANOVA took the form, in the single factor case as 𝑦 = 𝜇 + 𝛼𝑖 + 𝜖. 
The 𝜖 is the random error terms, 𝜇 is the grand mean or the overall mean of all observations regardless 
of factor level, and finally, 𝛼𝑖 is the adjustment to the mean for the factor level that the input belongs 
to; this value can be positive or negative as needed to adjust to the mean corresponding to the factor 
level in question. (As we will see below, this is not always how results are presented: one level may be 
selected as the “default” mean other than the grand mean, which will allow one 𝛼 to be zero.) 
 
As we added factors, the main effects model continued in the same vein. The two-way ANOVA 
predictive model was 𝑦 = 𝜇 + 𝛼𝑖 + 𝛽𝑗 + 𝜖. This model is interpreted similarly where 𝜖 is the random 

error, 𝜇 is the grand mean, and 𝛼𝑖 and 𝛽𝑗 are the adjustments for an observation with ith level in the 

first factor, and the jth level in the second factor. 
 
Let’s consider a factor with only two values for a simple to interpret contrast. Consider the case of 
gender. There are traditionally only two categories allowed, so there are only two possible levels. The 
grand mean will fall in between the means for each of the factor levels, thus one 𝛼 will be positive and 
one negative. If these differences are small enough, then this coefficient, similar to our slope coefficient 
in the regression model, is not sufficiently different from zero to be statistically significant. If they are 
large enough, then they will be a clear indication of a difference by level of the variable. In a case like 
this where there are only two categories, there is no “in-between” level, similar to a discrete variable 
based on counts. 
 
We did use a numerical variable taking on values of either 0 or 1 to represent gender in our regression 
analysis. (We did this on the exam and a similar situation occurs in the mtcars dataset for American 
made or not.) We can think of this as saying one gender is “True” taking on the level 1, and one is 
“False” taking on the level 0. (This is not a judgment call about value since the selection of which level is 
1 or 0 is arbitrary and only results in a sign flip.) In such a model, the constant in the equation represents 
the mean of the 0 factor level, and the slope coefficient represents the change in the mean from one 
factor level to the other.   
 



Things come a bit less similar if we have three factor levels, for instance, if they are labeled 0, 1, 2 (or 1, 
2, 3) in our regression model. The ANOVA model treats each factor level as independent, and so the 
difference between the levels can be different values. If we model the levels in regression, as described 
above, we are 1) explicitly ordering them (which is a problem if they are not in order or cannot be 
ordered), and 2) we are requiring that the distance between the first two levels be the same as the 
distance between the next two levels, so that even if the variables are in order, that the differences 
between the categories are the same is a big assumption. As we saw on the exam with education levels 
at the Beta company, it might not be the case that the salary jump from high school to associates degree 
is the same as the jump from masters to doctorate, or any other pair of consecutive levels. It’s possible 
this assumption is approximately valid, but it is an assumption we are making by using discrete numbers 
to stand in for these categorical levels when there are more than two levels. 
 
There is a way around this in regression, which we will discuss the specifics of in a couple of weeks, but 
it’s worth thinking about the advantages and disadvantages of our various encoding strategies as we go. 
 
Let’s look at this from the opposite perspective. 
 
Consider the model regression analysis using the mtcars data, modeling mpg using the cylinders 
variables as a number. 
 
Call: 
lm(formula = mpg ~ cyl, data = mtcars) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-4.9814 -2.1185  0.2217  1.0717  7.5186  
 
Coefficients: 

             Estimate  Std. Error  t value  Pr(>|t|)     

(Intercept)   37.8846      2.0738    18.27   < 2e-16 *** 

cyl           -2.8758      0.3224    -8.92  6.11e-10 *** 

--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 3.206 on 30 degrees of freedom 
Multiple R-squared:  0.7262, Adjusted R-squared:  0.7171  
F-statistic: 79.56 on 1 and 30 DF,  p-value: 6.113e-10 
 
What if we then model this as an ANOVA with cylinders as a factor? 
 
Call: 
   aov(formula = mpg ~ cyl, data = mtcars) 
 
Terms: 

                      cyl  Residuals 

Sum of Squares   824.7846   301.2626 

Deg. of Freedom         2         29 



 
Residual standard error: 3.223099 
Estimated effects may be unbalanced 

             Df  Sum Sq  Mean Sq  F value    Pr(>F)     

cyl           2   824.8    412.4     39.7  4.98e-09 *** 

Residuals    29   301.3     10.4                        

--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
(Intercept)        cyl6        cyl8  
  26.663636   -6.920779  -11.563636 
 
Compare the linear model when cylinders = 4 to the ANOVA intercept. 
Compare the linear model when cylinders = 6 to the ANOVA cyl6. How does the step here differ by 
changing two cylinders? 
Compare the linear model when cylinders = 8 to the ANOVA cyl8. How does the step here differ by 
doubling the number of cylinders (compared to 4)? Or with the step size of two compared to six 
cylinders? 
 
The value of the residual standard error is similar. The regression model appears to give a better sense 
of the quality of the model than the ANOVA with more measurements of fit than just the F-statistic. 
 
What happens if we have a lot of levels, say if we used weight as a factor in our model? 
 
Call: 
lm(formula = mpg ~ wt, data = mtcars) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-4.5432 -2.3647 -0.1252  1.4096  6.8727  
 
Coefficients: 

             Estimate  Std. Error  t value  Pr(>|t|)     

(Intercept)   37.2851      1.8776   19.858   < 2e-16 *** 

wt            -5.3445      0.5591   -9.559  1.29e-10 *** 

--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 3.046 on 30 degrees of freedom 
Multiple R-squared:  0.7528, Adjusted R-squared:  0.7446  
F-statistic: 91.38 on 1 and 30 DF,  p-value: 1.294e-10 
 
And now ANOVA:  
 
Call: 
   aov(formula = mpg ~ wt, data = mtcars) 
 



Terms: 

                        wt  Residuals 

Sum of Squares   1124.7955     1.2517 

Deg. of Freedom         28          3 

 
Residual standard error: 0.6459274 
Estimated effects may be unbalanced 
 
 

             Df  Sum Sq  Mean Sq  F value   Pr(>F)    

wt           28  1124.8    40.17    96.28  0.00149 ** 

Residuals     3     1.3     0.42                      

--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 

(Intercept)      wt1.615      wt1.835      wt1.935       wt2.14        wt2.2       wt2.32 wt2.465  wt2.62       

     30.400        0.000        3.500       -3.100       -4.400        2.000       -7.600       -8.900  -9.400      

 

wt2.77       wt2.78      wt2.875       wt3.15       wt3.17       wt3.19 wt3.215  wt3.435       wt3.44       

-10.700       -9.000       -9.400       -7.600      -14.600       -6.000       -9.000  -15.200      -11.833      

 

wt3.46       wt3.52       wt3.57       wt3.73       wt3.78       wt3.84  wt3.845       wt4.07       wt5.25      

-12.300      -14.900      -15.750      -13.100      -15.200      -17.100  -11.200      -14.000      -20.000      

 

wt5.345      wt5.424   

-15.700      -20.000 

 
Here the residual standard error is much smaller in the ANOVA model, but the coefficients are much 
more difficult to interpret. One reason the residual error is much smaller, though, is artificial. Because 
there are so many more “levels”, the coefficients for each level can be targeted to the one observation 
that occurs in most levels. The only error that can occur, then, is if more than one observation has the 
same weight. Since weight is continuous, this doesn’t happen often. 
 
Another major difference is that when we considered cylinders in an engine, if we wanted to predict 
another value, engines don’t actually come with 7 cylinders or 7.5 of them, so the levels are unique and 
distinct. With weight, however, if we wanted to estimate a valid weight value that did not appear in our 
original data, we have no way of doing it in the ANOVA model. There is no general relationship between 
weight and mpg that we could use to extrapolate values easily because we are treating them as distinct 
levels when they are not in reality. 
 
We will see soon that in R there is a function called glm(), that stands for general linear model. It will 
allow us to extend our notions of a linear model beyond what we have done so far, including working 
with logistic models and other extensions of ordinary least squares. We can also do ANOVA with it using 
factor variables.  Compare the glm() output for the factor(ed) variable cyl. 
 
Call: 
glm(formula = mpg ~ cyl, data = mtcars) 



 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-5.2636  -1.8357   0.0286   1.3893   7.2364   
 
Coefficients: 

             Estimate  Std. Error  t value  Pr(>|t|)     

(Intercept)   26.6636      0.9718   27.437   < 2e-16 *** 

cyl6          -6.9208      1.5583   -4.441  0.000119 *** 

cyl8         -11.5636      1.2986   -8.905  8.57e-10 *** 

--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
(Dispersion parameter for gaussian family taken to be 10.38837) 
 
    Null deviance: 1126.05  on 31  degrees of freedom 
Residual deviance:  301.26  on 29  degrees of freedom 
AIC: 170.56 
 
Number of Fisher Scoring iterations: 2 
 
In future lectures, we will also look at interactions between terms in linear models. We saw some cases 
last semester where interactions between factors was statistically significant, so we’ll want to be able to 
look at such interactions in the regression model as well. This is all still coming up! 
 
In the next lecture we are going to return to ANOVA analysis to look at Factorial Designs and analysis of 
such designs, specifically 2𝑝 factorial designs. Think about the relationship to regression as we proceed. 
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