
Lecture 8 
 
Factorial designs for ANOVA analysis 
Suppose you are designing an experiment to test p different factors on a measurement. If each of those 

factors has 𝑛𝑖 levels, then the total number of potential combinations those levels is ∏ 𝑛𝑖
𝑝
𝑖=1 . This can be 

a significant amount of data to collect, so the experimenter might want to run a test experiment of 
those p factors each with just two levels (presumably a “high” and a “low” one) to see if the factor 
matters at all before conducting the full experiment with all possible levels.  Such experiments are called 
2𝑝 factorial experiments. 
 
Unlike a Latin squares design, having at least one observation in each of the 2𝑝 combinations of levels 
means that interaction effects can be identified if they exist. 
 
We have previously looked at Three-Way ANOVA, and 23 factorial experiments follow this pattern of 
main effects, combine with possible two-way interactions, a three-way interaction and the rest is error. 
 
We can review some of our previous discussion of three-way ANOVA from last semester. 23 factorial 
experiments will be a bit easier to compute since there are only two levels, some of these values will 
reduce to 1 in our computations. 
 
As with our previous ANOVA models, we aren’t going to compute these by hand, but it’s worth seeing 
how the analysis develops and expands to account to the various effects and interactions. 
 

 
 
The notation in our text (Devore) uses gamma for the interaction terms as it did in the two-way model 
case, leaving delta for the third primary effect (if you know Greek, you know this is out-of-order now). 
Some sources will use gamma as the third primary effect, and may use multiple letters for the 
interaction effects going down the line.  The subscripts here really tell us what is going on.  The primary 
effects have only one subscript referring to each of the main treatment variables. The combination 
effects have pairs or triples of subscripts that correspond to the combination of main effects at play. 
Devore further adds subscripts to clarify which factor variables are involved (when 𝑖 and 𝑗 and 𝑘 are 
replaced with specific values, this helps to disambiguate). And then the error term 𝜖𝑖𝑗𝑘𝑙 is the random 

error on each measurement with mean of zero and standard deviation of 𝜎. 
 



 
 

This list doesn’t include the SSAC and SSBC sum of squares, but they can be generalized from the SSAB 
equation. 
 

 
 
Reminder that these are examples. For the full three-way model, we have three main effect hypotheses, 
three two-way interactions and one three-way interaction: 7 hypotheses to test. 
 
A full ANOVA table for this type of model will have to fill in as follows.  These formulas assume the 
sample size is the same for all components, but recall that we made some adjustments to account for 
different sample sizes in the various treatment combinations and similar adjustments can be made here. 
As our models become more complex, it becomes increasingly common to have only one observation in 
each treatment combination (or less). 
 

SOURCE OF VARIATION DF SUM OF SQUARES MEAN SQUARE F 

A 𝐼 − 1 𝑆𝑆𝐴 𝑀𝑆𝐴 𝐹𝐴 
B 𝐽 − 1 𝑆𝑆𝐵 𝑀𝑆𝐵 𝐹𝐵 
C 𝐾 − 1 𝑆𝑆𝐶 𝑀𝑆𝐶 𝐹𝐶  
AB (𝐼 − 1)(𝐽 − 1) 𝑆𝑆𝐴𝐵 𝑀𝑆𝐴𝐵 𝐹𝐴𝐵 
AC (𝐼 − 1)(𝐾 − 1) 𝑆𝑆𝐴𝐶 𝑀𝑆𝐴𝐶 𝐹𝐴𝐶  
BC (𝐽 − 1)(𝐾 − 1) 𝑆𝑆𝐵𝐶 𝑀𝑆𝐵𝐶 𝐹𝐵𝐶  
ABC (𝐼 − 1)(𝐽 − 1)(𝐾 − 1) 𝑆𝑆𝐴𝐵𝐶 𝑀𝑆𝐴𝐵𝐶 𝐹𝐴𝐵𝐶  
ERROR 𝐼𝐽𝐾(𝐿 − 1) 𝑆𝑆𝐸 𝑀𝑆𝐸  
TOTAL 𝐼𝐽𝐾𝐿 − 1 𝑆𝑆𝑇   



 
 
An example of a three-way model in R using the mtcars data set using the factors gear, am and carb to 
predict mpg. 
 

 
 
However, if we remove the interaction term, all the variable become signficant. 

 
 
As we noted, the full model of all possible interactions is quite complex, and we would need a complete 
layout (at least one observation for all conditions) in order to detect those effects which often do not 
rise to the level of significance.  We can limit our model to just main effects and then we don’t have to 
collect quite as much data. We can carefully chose the combinations of factors to measure. These are 
called incomplete layouts. They don’t have the power to test interactions, but they are more efficient, 
especially as we continue to add more variables with more treatment levels. 
 
As we increase the value of 𝑝 to be greater than three, the number of possible interactions increases. 

We will have 𝑝 main effects, (
𝑝
2

) two-way interactions, (
𝑝
3

) three-way interactions and so on until we 

have (
𝑝
𝑝) =1 p-way interactions.  For 𝑝 = 4, this means 4 main effects, 6 two-interactions, 4 three-way 

interactions and one 4-way interaction that are possible and should be included in the full model.  If 𝑝 =
5, then there are 5 main effects, 10 two-way interactions, 10 three-way interactions, 5 four-way 
interactions, and 1 five-way interaction.  While these higher-level interactions tend to get rejected right 
away, as we saw with even two-way and three-way ANOVA, sometimes the interaction will not be 
rejected, but the main effect might be, creating potential issues of interpretation for the model. 
 
As we increase the number of factors, we increase the possibility of other potential complications.  One 
possible complication is confounding variables.  It may not be possible to conduct all the experiments in 
the same, identical environment for a variety of real-world reasons. In some cases it may be possible to 
break the experiment down into smaller blocks to conduct 2𝑟 (with 𝑟 < 𝑝) experiments in an identical 
environment. While block designs are valid, this may reduce the sensitivity of the experiment and make 
some main effects or interactions impossible to estimate. However, this does generally allow lower-
order interactions or main effects to be estimable. The design of the experiment can assist on 
determining which effects could be confounded. 



Consider the 23 design with the following blocks. 
 

 
 
This type of blocking permits the two-way interactions to be estimated, and the main effects, but the 
three-way effects will be confounded. 
 
We can also use more than two blocks. In a five-factor experiment (A, B, C, D, and E), the two three-
factor interactions BCD and CDE might be chosen for confounding. The third effect confounded is then 
the generalized interaction of the two, obtained by writing the two chosen effects side by side and then 
cancelling any letters common to both: (BCE)(CDE)=BE. Notice that if ABC and CDE are chosen for 
confounding, their generalized interaction is (ABC)(CDE)=ABDE, so that no main effects or two-factor 
interactions are confounded.  
 
We can then select the blocks with even/odd and odd/odd contrasts with the confounded effects. An 
example of such a design is shown below. 
 

 
Block 1, containing (1), is called the principal block. A second block can be obtained by selecting any 
experimental condition not in the principal block and obtaining its generalized interaction with every 
condition in the principal block. The other blocks are then constructed in the same way by first selecting 
a condition not in a block already constructed and finding generalized interactions with the principal 
block.  
 
As we saw with earlier designs with many levels, as the number of factor variables grows, the number of 
conditions we need to observe can become quite large. The Latin Square design was one method of 
reducing the number of observations needed to study main effects in those cases. In 2𝑝 factorial 
designs, one sometimes prefers to do a half-replicate experiment, where only 2𝑝−1 observations are 
collected.  If the five-fold interaction is chosen to be the confounded effect, then we can use effects to 
pair by using aliases, or its generalized interaction with the confounded effect. 
 

 



We can then choose the first element of these pairs, or the second to conduct our half-replicate 
observations on.  Since the 4-factor effects are generally negligible, this allows the experimenter to test 
for the presence of main effects. 
 
A quarter-replicate experiment can also be constructed similarly resulting in quadruples shown below. 
 

 
Depending on the size of 𝑝, we could extend our analysis to 

1

2𝑟-replicate experiments. 

 
If you are interested in learning more about the details of factorial experimental design in general or in R 
specifically, I’ve linked several sources below. We will primarily concern ourselves with analyzing the 
results of our ANOVA tests on data collected in this fashion, so it’s important to know upfront what the 
limitations are, but we will let R do the ANOVA calculations for us.  I won’t ask you to design such an 
experiment, but it may be something you want to consider as part of your final project if it interests you. 
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