
Lecture 5 
 
Outliers and Influential Points in Linear Models 
There are a number of methods for dealing with outliers. We are not going to address all of them, but 
we will get a flavor for the various strategies and tools available in R.   We’ll also address the reasons for 
being concerned about these points and how to deal with them. 
 
Outliers and influential points can be the same point or different points. 
 
An outlier is a point that has a particularly large error relative to the regression line. We will look at 
several ways to identify these points numerically and some hypothesis tests we can apply. 
 
An influential point may be an outlier in the sense above, but it need not be. An influential point is a 
point such that, if it is removed from the data, has an outsized influence on the regression results: it 
may, for example, greatly impact the value or even the direction of the slope. 
 
Data sets that are smaller tend to be more effected by either type of point. As the size of the dataset 
grows, we should expect to have more outliers, but that each will have less impact on the overall trend. 
 
Last semester, when we looked at univariate (single variable) data, we discussed some strategies for 
identifying outliers. We’ll review those here because these methods can also be useful. 
 
An unusual value is generally considered to be an observation that occurs less than 5% of the time.  
Recall from the empirical rule (normal distribution), that 95% of normally distributed data falls within 2 
standard deviations of the mean.  So that is one possible standard we can use to identify potential 
outliers. Extreme outliers would be more than 3 standard deviations from the mean. 
 
Outliers can also be identified, especially in skewed data, using the interquartile range (IQR). Recall that 
the upper and lower fences in a box plot are 1.5 × 𝐼𝑄𝑅 above the third quartile, or below the first 
quartile.  The extreme fences are at 3 × 𝐼𝑄𝑅. We can apply these standards to also identify potential 
outliers. 
 
These standards applied to the independent or dependent variables may help you to identify influential 
points.  If a point is a long way from the rest of the data, it can have a big influence on the slope of the 
line.  Or it may not.  Applying these outlier standards to the original data can only flag points that are 
worth inspecting more closely, but the are not a guarantee that these points are problematic. 
 
However, when working with regression, the main place we want to apply these standards to is to the 
residuals. The outliers are those points that are far away from the line of best-fit. Let’s look at a specific 
example. We’ll use a simple linear regression model for this discussion, but everything we say about this 
for a simple linear regression model works the same way with a multivariable regression model. 
 
Let’s look at our residual plot for our simulated example that we’ve discussed previously. 
 



 
 
We have one X value we might want to pay attention to out on the far right, but the residual is small. 
We may return to this later as a potentially influential point. However, the outlier we want to pay 
attention to the is the residual at the top of the graph, the only one with a value greater than 10. Less 
concerning, but possibly of interest is the smallest residual. It’s the only one smaller than -7.5, so it has 
the second largest magnitude since the graph has no other residuals bigger than 7.5 on the other end 
except the one that is bigger than 10. 
 
There are many way to identify the observation that these points came from. We can apply a filter to 
the data. Or the qq-plot we looked at, also flagged values with observation numbers for us.  

 



This plot flags our high-value point at observation 46. And the smallest one at observation 110.  This 
dataset has 200 observations, so we would expect 200 × 0.05 = 10 potentially unusual values. And 
from the qq-plot, we can see that there are many values at or beyond two standard deviations from the 
mean. From the plot, I estimate 5 below the -2 standard deviation mark, and about the same above 2 
standard deviation mark.  This is what we would expect. 
 
In general, we should be cautious about removing data without good reason.  Observation 46 appears to 
be larger than expected (that’s what it means to be above the line), so that one warrants the most 
attention. This is not a guarantee, however, that we should remove it. 
 
We can also look at the residuals with a histogram or boxplot to see if these types of graphs flag points 
for us. 
 

 
We can see from the histogram that most of the data fits relatively nicely into a “smooth” curve (as 
smooth as one might expect from data), but there is one value that is way out to the right with a 
substantial gap. 
 

 



The boxplot also flags the largest value on the right as a potential extreme value, and the furthest 
observation on the left as well. 
 
If the outliers don’t impact the regression line much, generally, it’s better to keep the values, since 
removing them will reduce the value of the standard error. This could impact your confidence intervals, 
prediction intervals, and other estimates. It may cause you to underestimate the variability in the data. 
 
Let’s see what happens if we remove the most extreme point, observation 46 and then compare the 
analysis before and after. 
 

 
This graph shows the blue line with all 200 observations, and the red line with the regression after 
omitting observation 46. As you can see, you can barely see the blue line at all (a bit on the ends), which 
means that the regression did not substantially change from omitting the extreme value. We can look at 
the coefficients of the model and see much the same result. 
 
Model with observation 46: 
Coefficients: 

             Estimate  Std. Error  t value  Pr(>|t|)     

(Intercept)   2.48770     0.95444    2.606   0.00984 **  

X             0.87604     0.04581   19.123   < 2e-16 *** 

 
Model without observation 46: 
Coefficients: 

             Estimate  Std. Error  t value  Pr(>|t|)     

(Intercept)   2.72777     0.92318    2.955   0.00351 **  

X             0.86152     0.04437   19.418   < 2e-16 *** 



The 𝑅2 value is a bit higher in the second model. I think I would have to conclude that while observation 
46 is an outlier, nonetheless, it is not an influential point, and so can be safely retained in the data. 
 
We can conduct a similar test on observation 110 (the most negative residual), but if this one is not 
influential, given the position of observation 110 is not far to one end of the dataset, the result is likely 
to be similar. 
 
Let’s look at a case where the point is influential. 
 
There are a number of packages in R that can assist you in determining outliers and influential points. 
 
After fitting a model to crime data, we can look at a series of graphs that tell a story about our residuals. 
 

 
The top left graph is plotting residuals vs. fitted (predicted) values (instead of against the independent 
values). The qq-plot looks okay for the most part. Scale-location measures the size of the residual 
relative to their distance from center.  Leverages is a measure of how much influence a point has on the 
regression slope(s) using Cook’s distance. 
 
You can use these graphs to identify potentially problematic points.  Based on this data 9, 25 and 51 
need a further look. 
 
In addition to these graphical approaches combined with a variety of calculations related to extreme 
values, leverage, percentiles, distances or other measures, there are a number of statistical tests you 
can apply. 
 



Among them are Grubb’s Test which allows you to detect whether the highest or lowest value in a 
dataset is an outlier. Dixon’s test is similar, allowing you to test a specific high or low value.  Rosner’s 
Test allows you to test several values at once which can avoid the problem of masking, if two extreme 
values are close together.  You can specify how many values you want to check for, and the test will 
return a report on all tests with observation numbers that make them easy to track down and further 
analyze. 
 
There are also additional packages in R with additional tools. We’ll look at some of these tools in the lab. 
It’s a good idea to experiment with several of them and see which you like the best. There may be 
standards in your field to follow. 
 
My biggest piece of advice, though, is to reject data with caution.  Use these tools to look for errors. 
There may be more incentive to reject problematic points in small data sets. But in all cases, preserve 
the original data and compare, and be prepared to justify your choices with robust reasoning. Don’t just 
reject data because it was flagged in one test. Think of the procedure as a hypothesis test: the null 
hypothesis should be to preserve the data. The alternative should be supported with strong reasoning 
before rejecting a point. 
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