
Lecture 19 
 
Lags, Autocorrelation, ACF methods 
In a regular time series, autocorrelation measures the linear relationship between observations at 
different time points within the same time series. Specifically, autocorrelation at lag 𝑘 (ACF(k)) measures 
the correlation between the observations at time 𝑡 and the observations at time 𝑡 − 𝑘, where 𝑘 is a 
positive integer representing the time lag. 
 
For example, in a monthly time series of sales data, the autocorrelation at lag 1 would measure the 
correlation between the sales in January and the sales in February, while the autocorrelation at lag 12 
would measure the correlation between the sales in January and the sales in January of the previous 
year. 
 
Autocorrelation is important in regular time series analysis because it helps identify the presence of 
trends, seasonality, and other patterns in the data. Autocorrelation can be used to test for the presence 
of serial correlation (the dependence of observations on previous observations), which is a violation of 
the assumption of independence required by many statistical models. Autocorrelation can also be used 
to help identify the appropriate lag order for autoregressive and moving average models, and to help 
diagnose model misspecification or inadequate modeling assumptions. 
 
In time series analysis, a lag refers to the number of time periods between two consecutive observations 
in a time series. For example, in a monthly time series of sales data, the lag between January and 
February is one 𝑦𝑡−1, and the lag between January and March is two 𝑦𝑡−2. 
 
Lags are often used in autocorrelation analysis to measure the linear relationship between observations 
at different points in time. For example, the autocorrelation at lag k measures the correlation between 
the observations at time t and the observations at time t-k. By examining the autocorrelation at 
different lags, analysts can identify the presence of patterns in the data such as trends, seasonality, or 
cyclical behavior. 
 
Lags are also used in time series modeling, such as in autoregressive integrated moving average (ARIMA) 
models, where the lag order is an important parameter to be specified. The lag order represents the 
number of past observations used in the model to predict future values of the time series. The choice of 
the appropriate lag order can have a significant impact on the accuracy of the model's predictions. 
 
In time series analysis, ACF stands for "autocorrelation function". The ACF is a mathematical tool used 
to measure the correlation between observations at different lags within a time series. 
 
The ACF at lag 𝑘 (ACF(k)) measures the correlation between the observations at time 𝑡 and the 
observations at time 𝑡 − 𝑘. By calculating the ACF at different lags, analysts can identify the presence of 
patterns in the data such as trends, seasonality, or cyclical behavior. 
 



 
 
The ACF is typically visualized using a plot called the autocorrelation plot, which displays the ACF values 
for different lags. The autocorrelation plot can help analysts identify the lag at which the autocorrelation 
is strongest, which can provide insights into the underlying patterns in the data. 
 
The ACF is an important tool in time series analysis and modeling, as it is used to diagnose model 
adequacy and to help identify the appropriate lag order for autoregressive and moving average models. 
 
In time series analysis, PACF stands for "partial autocorrelation function". The PACF is a mathematical 
tool used to measure the correlation between observations at different lags within a time series, after 
removing the effects of the intervening lags. 
 
The PACF at lag 𝑘 (PACF(k)) measures the correlation between the observations at time 𝑡 and the 
observations at time 𝑡 − 𝑘, after removing the effects of the intervening lags. This is different from the 
ACF, which measures the correlation at lag 𝑘 without accounting for the effects of the intervening lags. 
 

 
 
The PACF is typically visualized using a plot called the partial autocorrelation plot, which displays the 
PACF values for different lags. The partial autocorrelation plot can help analysts identify the lag at which 
the partial autocorrelation is strongest, which can provide insights into the underlying patterns in the 
data. It looks similar to the ACF graph, but the correlations plotted will not be the same. 
 
The PACF is an important tool in time series analysis and modeling, as it is used to diagnose model 
adequacy and to help identify the appropriate lag order for autoregressive models. 



 
Both the ACF and PACF are important tools in time series analysis and modeling, and they are used for 
different purposes. 
 
The ACF is primarily used to identify the presence of autocorrelation in a time series, which is a measure 
of the relationship between observations at different lags. By analyzing the ACF plot, analysts can 
identify the presence of patterns such as seasonality, cyclical behavior, and trends. The ACF is also used 
to identify the appropriate lag order for moving average (MA) models. 
 
The PACF, on the other hand, is primarily used to identify the appropriate lag order for autoregressive 
(AR) models. The PACF measures the correlation between observations at different lags, while 
controlling for the effects of intervening lags. By analyzing the PACF plot, analysts can identify the lag 
order for AR models. 
 
An autoregressive (AR) model is a type of statistical model used in time series analysis to describe the 
relationship between an observation and a lagged value of the same time series. In an AR model, the 
current value of a variable is modeled as a linear combination of its past values, with the coefficients of 
the past values estimated from the data. 
 
The order of an AR model (denoted as "𝑝") indicates the number of past values of the variable that are 
used to model the current value. For example, an 𝐴𝑅(1) model uses the lagged value from the previous 
time step to predict the current value, while an 𝐴𝑅(2) model uses the values from the two previous 
time steps. 
 
The general form of an 𝐴𝑅(𝑝) model can be written as: 
 

𝑦𝑡  =  𝑐 + 𝛷1𝑦𝑡−1  +  𝛷2𝑦𝑡−2 + . . . + 𝛷𝑝𝑦𝑡−𝑝  +  𝜀𝑡 

 
where: 
𝑦𝑡 is the value of the variable at time 𝑡 
𝑐 is a constant term 
𝛷1, 𝛷2, . . . , 𝛷𝑝 are the coefficients of the lagged values of the variable 

𝜀𝑡 is the error term, which is assumed to be white noise 
 
AR models are useful for modeling stationary time series data that exhibit autocorrelation, which means 
that the current value of the variable is correlated with its past values. AR models are commonly used in 
financial forecasting, weather forecasting, and other applications in which past values of a variable can 
be used to predict future values. 
 
The partial autocorrelation function (PACF) can be used to identify the appropriate number of lags to 
include in an autoregressive (AR) model. The PACF measures the correlation between the series and its 
lags at different time lags. 
 
To choose the number of lags in an AR model using the PACF, one can look for significant correlation 
coefficients at different lags. If the PACF shows a significant correlation at a certain lag and then 
gradually decreases to zero as the lags increase, this suggests that the AR model with that lag is 
appropriate. 
 



One common approach is to use the partial autocorrelation function (PACF) to identify the lag structure 
of the AR model. The PACF measures the correlation between the series and its lags after adjusting for 
the effect of the intermediate lags. Significant coefficients in the PACF at a certain lag indicate that this 
lag should be included in the model. 
 
If the ACF and PACF do not provide clear guidance on the number of lags to include in the model, other 
methods such as the Akaike Information Criterion (AIC) or Bayesian Information Criterion (BIC) can be 
used to select the best model. These methods compare the goodness-of-fit of models with different 
numbers of lags and choose the one that balances the fit with the complexity of the model. 
 

 
 
Resources: 

1. https://vitalflux.com/different-types-of-time-series-forecasting-models/ 
2. https://neptune.ai/blog/select-model-for-time-series-prediction-task 
3. https://statisticsbyjim.com/time-series/autocorrelation-partial-autocorrelation/ 
4. https://online.stat.psu.edu/stat462/node/188/ 
5. https://towardsdatascience.com/interpreting-acf-and-pacf-plots-for-time-series-forecasting-

af0d6db4061c 
6. https://www.linkedin.com/pulse/time-series-analysis-short-introduction-/?trk=pulse-article 
7. https://machinelearningmastery.com/gentle-introduction-autocorrelation-partial-

autocorrelation/ 
8. https://otexts.com/fpp2/AR.html 
9. https://rpubs.com/JSHAH/481706  
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