
Lecture 4 
 
Support Vector Machines 
K-Nearest Neighbors 
 
A Support Vector Machine (SVM) is a powerful and versatile machine learning algorithm used for both 
classification and regression tasks. SVMs are known for their ability to handle high-dimensional data and 
their effectiveness in separating data into different classes. Here's how the SVM algorithm works: 
 
1. Data Representation: SVM starts with a labeled dataset, where each data point is represented as a 
feature vector and assigned to one of two classes: positive or negative (for binary classification). 
 
2. Objective: The primary objective of SVM is to find a hyperplane that best separates the data points of 
different classes with the maximum margin. The margin is the distance between the hyperplane and the 
nearest data points (support vectors) of each class. 
 
3. Hyperplane Selection: The SVM algorithm selects the hyperplane that maximizes the margin. This 
hyperplane is called the "maximum-margin hyperplane" or the "optimal hyperplane." The hyperplane 
can be linear, meaning it is a straight line in 2D, a plane in 3D, or a hyperplane in higher dimensions. The 
dimensionality depends on the number of features in the dataset. 
 
4. Support Vectors: Support vectors are data points that are closest to the decision boundary (the 
margin) and have the smallest margin. These support vectors play a crucial role in defining the optimal 
hyperplane. The optimal hyperplane is determined by a subset of support vectors, so only a few data 
points have significant influence on the decision boundary. 
 
5. Kernel Trick (Optional): In cases where the data is not linearly separable, SVMs can use the kernel trick 
to transform the data into a higher-dimensional space, where it becomes linearly separable. Common 
kernel functions include the linear kernel, polynomial kernel, and radial basis function (RBF) kernel. 
 
6. Margin Calculation: The margin is calculated as the perpendicular distance between the optimal 
hyperplane and the closest support vectors from each class. Maximizing this margin is essential for 
SVM's robustness and generalization. 
 
7. Optimization Problem: The training of an SVM involves solving an optimization problem to find the 
optimal hyperplane. The optimization problem aims to maximize the margin while ensuring that all data 
points are correctly classified or have a margin of at least one. This leads to the formulation of a convex 
quadratic programming problem. 
 
8. Soft Margin (Optional): In real-world data, it's often not possible to find a perfect hyperplane due to 
noise and outliers. SVM can be adapted to handle such situations by introducing a "soft margin" that 
allows for some misclassification. This is known as the "soft-margin SVM." 
 
9. Classification or Regression: Once the optimal hyperplane is determined, it can be used for 
classification tasks. New data points are classified based on which side of the hyperplane they fall. For 
regression tasks, SVM can be used to predict numerical values (although, we will not use it for this 
purpose in this course.) 
 



10. Regularization (C Parameter): The regularization parameter "C" is used to control the trade-off 
between maximizing the margin and minimizing classification errors. Higher values of C prioritize 
accuracy, while lower values prioritize margin maximization. 
 
SVMs are particularly effective when dealing with high-dimensional data or cases where a clear margin 
exists between classes. They are used in various applications, including image classification, text 
classification, and anomaly detection. The kernel trick and the ability to handle nonlinear data make 
SVMs a versatile choice for many machine learning problems. 
 
Let's walk through a simple example of using a Support Vector Machine (SVM) for a binary classification 
problem. In this example, we'll classify iris flowers into two classes based on their sepal length and sepal 
width. 
 
Step 1: Import Necessary Libraries 
First, you need to import the required libraries in R. In this example, we'll use the e1071 package for 
SVM. 
# Install and load the e1071 package 

install.packages("e1071") 

library(e1071) 

 
Step 2: Load and Prepare the Data 
We'll use the built-in Iris dataset from R, which contains measurements of sepal length and width for 
three species of iris flowers. For this example, we'll focus on classifying the Setosa species. 
# Load the Iris dataset 

data(iris) 

 

# Subset the data to include only Setosa and non-Setosa samples 

iris_setosa <- iris[iris$Species == "setosa", ] 

iris_non_setosa <- iris[iris$Species != "setosa", ] 

 

# Create a binary classification task (Setosa vs. non-Setosa) 

data <- rbind(iris_setosa, iris_non_setosa) 

 
Step 3: Split the Data into Training and Testing Sets 
Divide the dataset into a training set and a testing set for model evaluation. 
# Set a random seed for reproducibility 

set.seed(123) 

 

# Create an index for splitting the data (70% training, 30% testing) 

index <- sample(1:nrow(data), 0.7 * nrow(data)) 

 

# Split the data 

train_data <- data[index, ] 

test_data <- data[-index, ] 

 
Step 4: Train an SVM Model 
In this step, you'll train an SVM model using the training data. We'll use a linear kernel for simplicity. 
# Train an SVM model with a linear kernel  



svm_model <- svm(Species ~ Sepal.Length + Sepal.Width, data = 

train_data, kernel = "linear")  

 
Step 5: Make Predictions 
Use the trained SVM model to make predictions on the testing data. 
# Make predictions on the testing data  

predictions <- predict(svm_model, newdata = test_data)  

 

Step 6: Evaluate the Model 
Finally, evaluate the SVM model's performance using appropriate metrics such as accuracy, precision, 
recall, or an ROC curve. In this example, we'll calculate the accuracy. 
# Calculate the accuracy  

accuracy <- mean(predictions == test_data$Species) cat("Accuracy:", 

accuracy, "\n")  

 
This is a basic example of using an SVM for binary classification. In practice, you would typically perform 
more data preprocessing, explore different kernel functions, tune hyperparameters, and use cross-
validation for a more comprehensive evaluation of the model's performance. However, this example 
provides a starting point for applying SVM to a real-world classification problem. See the code examples 
file for this week for a more detailed procedure. 
 
The k-Nearest Neighbors (k-NN) algorithm is a simple and intuitive machine learning algorithm used for 
both classification and regression tasks. It operates on the principle that data points with similar features 
tend to belong to the same class (in the case of classification) or have similar target values (in the case of 
regression). Here's how the k-NN algorithm works: 
 
1. Data Representation: k-NN starts with a labeled dataset, where each data point is represented as a 
feature vector and assigned to one of multiple classes (for classification) or has a numerical target value 
(for regression). 
 
2. Determine the Value of k: The number "k" is a hyperparameter that you need to specify before 
applying k-NN. It represents the number of nearest neighbors to consider when making a prediction. The 
choice of "k" can significantly impact the algorithm's performance. A small "k" may lead to noisy 
predictions, while a large "k" may result in overly smooth predictions. Even values of k can lead to ties in 
binary classification, which the algorithm will decide by chance. This can make the model unstable. 
 
3. Calculate Distances: For a new data point, calculate the distance (similarity) between that point and all 
other data points in the dataset. Common distance metrics include Euclidean distance, Manhattan 
distance, or cosine similarity. The choice of distance metric can be tailored to the nature of the data and 
the problem. Before calculating the distances, you may need to consider rescaling variables so that one 
variable does not dominate the others. 
 
4. Find the Nearest Neighbors: Select the "k" data points with the shortest distances to the new data 
point. These are the "k" nearest neighbors. These nearest neighbors will be used to make predictions for 
the new data point. 
 



5. For Classification: In the case of classification, count the occurrences of each class among the "k" 
nearest neighbors. The new data point is assigned to the class that is most common among the nearest 
neighbors (a majority vote). 
 
6. For Regression: In the case of regression, calculate the average of the target values of the "k" nearest 
neighbors. The new data point is assigned the average value as its prediction. 
 
7. Make Predictions: For each new data point, repeat the above steps to make predictions based on the 
"k" nearest neighbors. 
 
8. Evaluate and Tune: After applying k-NN, evaluate the model's performance using appropriate metrics 
such as accuracy (for classification) or mean squared error (for regression). You can experiment with 
different values of "k" to find the best-performing model for your dataset. 
 
Key Considerations: 

• k-NN is a non-parametric algorithm, which means it doesn't make assumptions about the 
underlying data distribution. 

• The choice of distance metric, "k," and the representation of data can significantly affect the 
results. 

• k-NN is sensitive to the scale of features, so feature scaling (e.g., normalization or 
standardization) is often required. 

• k-NN is computationally intensive, especially with large datasets, as it requires calculating 
distances for each data point. 

• k-NN is a straightforward and interpretable algorithm suitable for small to moderately sized 
datasets. However, it may not perform well on high-dimensional data, and careful consideration 
of parameter tuning is essential for optimal results. 

 
Let's walk through a small example of using the k-Nearest Neighbors (k-NN) algorithm for a binary 
classification problem. In this example, we'll classify data points as either "Red" or "Blue" based on their 
coordinates on a 2D plane. 
 
Step 1: Import Necessary Libraries: In R, you can use the "class" package for k-NN classification. First, 
install and load the package: 
install.packages("class")  

library(class)  

 
Step 2: Generate Sample Data: For simplicity, we'll create a small dataset with example data points. Each 
data point has x and y coordinates and is labeled as "Red" or "Blue." 
# Sample data  

data <- data.frame( x = c(2, 3, 5, 8, 10, 12, 15, 17, 19, 22), y = 

c(3, 4, 6, 8, 9, 11, 13, 15, 16, 18), label = c("Red", "Red", "Red", 

"Red", "Red", "Blue", "Blue", "Blue", "Blue", "Blue") )  

 
Step 3: Split Data into Training and Testing Sets: Divide the dataset into a training set and a testing set for 
model evaluation. 
# Set a random seed for reproducibility  

set.seed(123)  

# Create an index for splitting the data (70% training, 30% testing)  



index <- sample(1:nrow(data), 0.7 * nrow(data))  

# Split the data  

train_data <- data[index, ]  

test_data <- data[-index, ]  

 
Step 4: Train the k-NN Model: Train a k-NN model using the training data. For this example, we'll set k = 3 
(you can experiment with different values of k). 
# Train a k-NN model with k = 3  

k <- 3  

knn_model <- knn(train = train_data[, c("x", "y")], test = test_data[, 

c("x", "y")], cl = train_data$label, k = k)  

 
Step 5: Make Predictions: Use the trained k-NN model to make predictions on the testing data. 
# Predict labels for the testing data  

predictions <- knn_model  
 
Step 6: Evaluate the Model: Evaluate the k-NN model's performance by calculating accuracy or creating a 
confusion matrix. 
# Calculate accuracy  

accuracy <- mean(predictions == test_data$label)  

cat("Accuracy:", accuracy, "\n")  

# Create a confusion matrix  

conf_matrix <- table(Actual = test_data$label, Predicted = 

predictions)  

print(conf_matrix)  

 
This simple example demonstrates how to use k-NN for a binary classification problem. The model 
predicts whether data points should be labeled as "Red" or "Blue" based on their coordinates. In 
practice, you would typically apply k-NN to more complex datasets, preprocess the data, and experiment 
with different values of k to find the optimal model. 
 
In the next lecture, we’ll look at Decision Trees and Random Forest. 

 
Resources: 

1. https://www.datacamp.com/tutorial/support-vector-machines-r 
2. https://www.geeksforgeeks.org/classifying-data-using-support-vector-machinessvms-in-r/ 
3. https://uc-r.github.io/svm 
4. https://cran.r-project.org/web/packages/e1071/vignettes/svmdoc.pdf 
5. https://www.edureka.co/blog/support-vector-machine-in-r/ 
6. https://www.simplilearn.com/tutorials/data-science-tutorial/svm-in-r 
7. https://www.projectpro.io/recipes/use-svm-classifier-r 
8. https://www.kaggle.com/code/meetnagadia/support-vector-machine-r-tutorial 
9. https://learndatascienceskill.com/index.php/2020/07/15/support-vector-machines-svms-with-r/ 
10. https://www.datacamp.com/tutorial/k-nearest-neighbors-knn-classification-with-r-tutorial 
11. https://www.geeksforgeeks.org/k-nn-classifier-in-r-programming/ 
12. https://rpubs.com/pmtam/knn 
13. https://towardsdatascience.com/k-nearest-neighbors-algorithm-with-examples-in-r-simply-

explained-knn-1f2c88da405c 
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14. https://www.analyticsvidhya.com/blog/2015/08/learning-concept-knn-algorithms-
programming/ 

15. https://fderyckel.github.io/machinelearningwithr/knnchapter.html 
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