
Lecture 10 
 
Hierarchical Clustering 
Agglomerative Clustering 
Spectral Clustering 
 
Hierarchical clustering is a popular clustering technique used in data mining and machine learning. It 
organizes data points into a hierarchical structure of clusters, often represented as a tree-like diagram 
called a dendrogram. Hierarchical clustering can be categorized into two main approaches: 
agglomerative (bottom-up) and divisive (top-down). Here, we'll focus on the agglomerative approach, 
which is more commonly used. 
 
Agglomerative Hierarchical Clustering: Agglomerative hierarchical clustering starts with each data point 
as its cluster and then recursively merges the closest clusters, forming a hierarchy. Here's a step-by-step 
overview of how it works: 
 
1. Initialization: Begin with each data point as a separate cluster. If you have 𝑛 data points, you start with 
𝑛 clusters, each containing a single data point. 
 
2. Merge Closest Clusters: Identify the two closest clusters based on a distance metric, often using 
methods like single-linkage, complete-linkage, or average-linkage. Merge these two clusters into a new, 
larger cluster. 
 
3. Update Distance Matrix: Recalculate the distances between this newly formed cluster and all other 
clusters, resulting in an updated distance matrix. 
 
4. Repeat: Repeat steps 2 and 3 until there is only one cluster left, which contains all data points. The 
hierarchy of clusters forms a dendrogram. Dendrogram: A dendrogram is a tree-like diagram that 
represents the hierarchical structure of clusters. The vertical lines in the dendrogram indicate the 
merging of clusters at each step. The height at which clusters merge reflects the dissimilarity between 
them. 
 

 
 
Key Considerations: 



Choice of Distance Metric: The choice of distance metric (Euclidean, Manhattan, etc.) significantly affects 
the results. The method for measuring the distance between clusters also matters, as single-linkage, 
complete-linkage, and average-linkage can lead to different outcomes. 
 
Number of Clusters: Hierarchical clustering does not require you to specify the number of clusters (𝑘) 
beforehand. Instead, you can choose the desired level of granularity by cutting the dendrogram at a 
certain height. 
 
Interpreting the Dendrogram: The dendrogram provides insights into the hierarchical relationships 
between clusters. By cutting it at various heights, you can obtain different clusterings with varying 
numbers of clusters. 
 
Scalability: Hierarchical clustering can be computationally intensive, especially for large datasets, as it 
involves repeated distance calculations and matrix updates. 
 
 
Applications: 

• Hierarchical clustering is widely used in various fields and applications, including: 

• Biology: For phylogenetic tree construction and gene expression analysis. 

• Image Analysis: For segmentation and object detection. 

• Marketing: For customer segmentation and market basket analysis. 

• Social Network Analysis: For community detection. 

• Document Clustering: For organizing documents into topic hierarchies. 
 
Hierarchical clustering is a versatile technique that provides insights into the structure of data, making it 
valuable for exploratory data analysis and pattern discovery. It allows you to visualize the relationships 
between clusters and analyze data at multiple levels of granularity. 
 
An example of hierarchical clustering in R using the hclust function and the iris dataset. In this example, 
we will perform agglomerative hierarchical clustering on the sepal length and sepal width measurements 
from the iris dataset. Hierarchical clustering will create a dendrogram, allowing us to explore the 
hierarchical relationships between data points. 
 
Here's how to perform hierarchical clustering in R: 
# Load the iris dataset  

data(iris)  

# Select the relevant features (sepal length and sepal width)  

iris_features <- iris[, c("Sepal.Length", "Sepal.Width")]  

# Perform hierarchical clustering  

hc <- hclust(dist(iris_features), method = "complete")  

# Complete-linkage clustering # Plot the dendrogram  

plot(hc, main = "Hierarchical Clustering of Iris Data", xlab = 

"Species")  

 
This code does the following: 
Loads the iris dataset and selects the relevant features (sepal length and sepal width). Performs 
hierarchical clustering using the hclust function. We use the "complete" linkage method, which 
calculates the distance between clusters as the maximum distance between their individual data points.  



 
You can choose other linkage methods like "single," "average," or "ward.D2" based on your preferences. 
It then plots the dendrogram using the plot function, which shows the hierarchical structure of the 
clusters. In the dendrogram, data points are represented as leaves, and the height at which branches 
merge indicates the dissimilarity between clusters. 
 
When you run this code, you'll see a dendrogram that illustrates the hierarchical clustering of the iris 
data. Data points are grouped together based on their sepal length and sepal width measurements, and 
you can choose to cut the dendrogram at a certain height to obtain different clusterings with varying 
numbers of clusters. This hierarchical approach provides insights into the relationships between clusters 
and allows you to explore the data at multiple levels of granularity. 
 
Agglomerative clustering is a hierarchical clustering technique that falls under the broader category of 
hierarchical clustering algorithms. Unlike divisive clustering, which starts with all data points in one 
cluster and recursively divides them into smaller clusters, agglomerative clustering begins with each data 
point in a separate cluster and progressively merges them into larger clusters. Here's how agglomerative 
clustering works: 
 
Basic Procedure: 
Initialization: Start with each data point as a single cluster. If you have 𝑛 data points, you begin with 𝑛 
clusters, each containing one data point. 
 
Merge Closest Clusters: Identify the two closest clusters based on a chosen linkage method, which 
determines how to measure the distance between clusters. Common linkage methods include: 
 

• Single Linkage: Based on the minimum distance between data points in the two clusters. 

• Complete Linkage: Based on the maximum distance between data points in the two clusters. 

• Average Linkage: Based on the average distance between data points in the two clusters. 

• Ward's Linkage: Minimizes the increase in variance within clusters when merging. 
 
Update Distance Matrix: Recalculate the distances between the newly formed cluster and all other 
clusters, resulting in an updated distance matrix. 
 
Repeat: Continue merging the two closest clusters and updating the distance matrix until there is only 
one cluster left, which contains all data points. The hierarchy of clusters forms a dendrogram. 
 
Dendrogram: The output of agglomerative clustering is often visualized as a dendrogram, which is a tree-
like diagram that represents the hierarchy of clusters. The vertical lines in the dendrogram indicate the 
merging of clusters at each step, with the height at which they merge reflecting the dissimilarity 
between them. 
 
Key Considerations: 
Agglomerative clustering does not require you to specify the number of clusters (𝑘) in advance. Instead, 
you can choose the desired level of granularity by cutting the dendrogram at a certain height. 
 
The choice of linkage method can significantly affect the results. Different linkage methods may lead to 
different cluster shapes and sizes. 
 



The order in which clusters are merged can impact the final clustering result. The algorithm can start 
with the two closest clusters or the two farthest clusters. 
Agglomerative clustering is computationally intensive, especially for large datasets, as it involves 
repeated distance calculations and matrix updates. 
 
Applications: 
Agglomerative clustering is used in various fields and applications, including biology for phylogenetic tree 
construction, image analysis for segmentation and object detection, marketing for customer 
segmentation, social network analysis for community detection, and document clustering for organizing 
documents into topic hierarchies. 
 
Agglomerative clustering is a versatile technique that provides insights into the structure of data and 
allows for hierarchical exploration of clusters. It is particularly valuable when you want to understand 
relationships between clusters at different levels of granularity. 
 
An example of agglomerative clustering in R using the agnes function from the cluster package. In this 
example, we will use a synthetic dataset and apply agglomerative clustering to group the data points into 
clusters. We'll also visualize the results using a dendrogram. 
 
First, ensure that you have the cluster package installed. You can install it using the following command if 
it's not already installed: 
 
install.packages("cluster")  

 
Now, let's create a synthetic dataset and perform agglomerative clustering: 
 
# Load the cluster library  

library(cluster) 

# Generate synthetic data  

set.seed(123)  

data <- matrix(rnorm(200, mean = 0, sd = 1), ncol = 2)  

# Perform agglomerative clustering  

agglo_result <- agnes(data, method = "complete")  

# Using complete linkage  

# Plot the dendrogram  

plot(agglo_result, main = "Agglomerative Clustering Example")  

 
In this code, we: Load the cluster library. Generate a synthetic dataset with two clusters using random 
data. Perform agglomerative clustering using the agnes function. We use the "complete" linkage 
method, which calculates the distance between clusters as the maximum distance between their 
individual data points. You can choose other linkage methods such as "single" or "average" based on 
your preferences. Plot the dendrogram using the plot function to visualize the hierarchical clustering 
results. 
 
When you run this code, you will see a dendrogram that illustrates the hierarchical clustering of the 
synthetic data. The dendrogram shows the hierarchical structure of clusters, with the height at which 
branches merge indicating the dissimilarity between clusters. 
 



You can choose to cut the dendrogram at a certain height to obtain different clusterings with varying 
numbers of clusters. Agglomerative clustering provides a hierarchical view of the data's clustering 
structure, allowing you to explore the data at different levels of granularity. 
 
Spectral clustering is a powerful and versatile clustering technique that is widely used in data mining and 
machine learning. It differs from traditional clustering methods like K-Means or hierarchical clustering by 
embedding the data into a lower-dimensional space and performing clustering in that space. Spectral 
clustering is particularly useful for discovering clusters with complex shapes, handling non-convex 
clusters, and finding clusters of varying sizes. Here's how spectral clustering works: 

 
Basic Procedure: 
Affinity Matrix: Start with your data, which can be represented as a matrix of pairwise affinities or 
similarities between data points. The affinity matrix encodes how similar or related each data point is to 
every other data point. Common similarity measures include Euclidean distance, cosine similarity, or 
other kernel functions. 
 
Graph Construction: Use the affinity matrix to construct a graph where data points are nodes, and the 
affinities represent edge weights. You can choose to build a fully connected graph or a k-nearest 
neighbor graph, depending on the nature of your data. 
 
Spectral Embedding: Compute the Laplacian matrix of the graph, which characterizes the connectivity 
and structure of the data. This matrix can be used to derive the graph Laplacian eigenvectors. 
 
Eigenvector Decomposition: Compute the eigenvectors and eigenvalues of the Laplacian matrix. These 
eigenvectors represent the embedded representation of the data in a lower-dimensional space. 
 
Cluster Assignment: After obtaining the eigenvectors, perform clustering on the embedded data using 
conventional clustering techniques like K-Means or normalized cuts. You can choose the number of 
clusters (𝑘) or use techniques like the eigengap heuristic to determine the optimal 𝑘. 

 
Key Considerations: 

• Spectral clustering can handle complex cluster shapes and is less sensitive to the initialization of 
cluster centers compared to K-Means. 



• It can uncover clusters with varying densities and sizes. 

• The choice of the similarity metric and the graph construction method is crucial, and it can affect 
the results significantly. Different choices can lead to different cluster structures. 

• Spectral clustering may require parameter tuning, such as the number of neighbors in the k-
nearest neighbor graph or the number of eigenvectors to use. 

• It is suitable for both numerical and categorical data. 

• Spectral clustering is computationally intensive, especially for large datasets, due to the 
eigenvector decomposition step. 

 
Applications: Spectral clustering is used in various applications, including: 

• Image segmentation: For partitioning images into regions with similar properties. 

• Document clustering: For organizing documents into meaningful groups based on their 
content. 

• Biological data analysis: For clustering genes or proteins in genomic and proteomic studies. 

• Community detection in social networks: For identifying communities or groups of nodes 
with similar properties. 

• Anomaly detection: For identifying data points that deviate from the norm in a dataset. 
 
 
Resources: 

1. https://www.r-bloggers.com/2016/01/hierarchical-clustering-in-r-2/ 
2. https://uc-r.github.io/hc_clustering 
3. https://www.datacamp.com/tutorial/hierarchical-clustering-R 
4. https://www.geeksforgeeks.org/hierarchical-clustering-in-r-programming/ 
5. https://www.statology.org/hierarchical-clustering-in-r/ 
6. https://bookdown.org/rdpeng/exdata/hierarchical-clustering.html 
7. https://medium.com/@sukmaanindita/wards-hierarchical-clustering-method-using-r-studio-

a47b5a79cb4d 
8. https://online.stat.psu.edu/stat508/lesson/12/12.8 
9. https://www.datanovia.com/en/lessons/agglomerative-hierarchical-clustering/ 
10. https://mhahsler.github.io/Introduction_to_Data_Mining_R_Examples/book/clustering-

analysis.html 
11. https://www.di.fc.ul.pt/~jpn/r/spectralclustering/spectralclustering.html 
12. https://rpubs.com/nurakawa/spectral-clustering 
13. https://rpubs.com/gargeejagtap/SpectralClustering 
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