Multivariable Optimization (4.3)
Curve Sketching (2.8)
Review for Exam \#1

Multivariable Optimization in two variables (only)
In the one-variable case, we had both a first derivative test and a second derivative test.
The first derivative in two dimensions involves vectors (which we are not required to know for this course), so we won't do that. There is a second derivative test, second partial test, which we can do.

Second partials test is also sometimes referred to as the D-test.

$$
D=f_{x x}\left(x_{0}, y_{0}\right) f_{y y}\left(x_{0}, y_{0}\right)-\left(f_{x y}\left(x_{0}, y_{0}\right)\right)^{2}
$$

Possible outcomes:
4 things can happen:

1) Maximum: D is positive, $f_{x x}$ is negative then that means it is concave down and a maximum ($f_{y y}$ will match)
2) Minimum: D is positive, $f_{x x}$ is positive then that means it is concave up and a minimum ($f_{y y}$ will match)
3) Saddle Point: D is negative
4) Cannot be determined: $D=0$

Example.
Find the critical point(s) and classify them for the function $f(x, y)=2 x y-x^{2}-2 y^{2}+6 x+4$.

$$
\begin{gathered}
f_{x}=2 y-2 x+6 \\
f_{y}=2 x-4 y \\
f_{x x}=-2 \\
f_{y y}=-4 \\
f_{x y}=2 \\
D=(-2)(-4)-(2)^{2}=8-4=4
\end{gathered}
$$

D is positive, and $f_{x x}$ is negative, concave downs means it's a maximum.

Where is the critical point? Occurs when all the partial derivatives are 0 at the same time. Set both of our first partials equal to zero and then solve them as a system.

$$
\begin{gathered}
2 y-2 x+6=0 \\
2 x-4 y=0 \\
2 x=4 y \\
x=2 y \\
\\
2 y-2(2 y)+6=0 \\
2 y-4 y=-6
\end{gathered}
$$

Critical point is at $(6,3)$ and it is a maximum.

Example.
Find all the critical points and characterize them for the function $f(x, y)=x^{3}+y^{3}+3 x^{2}-3 y^{2}-8$

$$
\begin{gathered}
f_{x}=3 x^{2}+6 x=0 \\
f_{y}=3 y^{2}-6 y=0 \\
f_{x x}=6 x+6 \\
f_{y y}=6 y-6 \\
f_{x y}=0 \\
3 x^{2}+6 x=3 x(x+2)=0 \\
x=0, x=-2 \\
3 y^{2}-6 y=3 y(y-2)=0 \\
y=0, y=2
\end{gathered}
$$

4 critical points: $(0,0),(0,2),(-2,0),(-2,2)$

D-test for $(0,0): D=[6(0)+6][6(0)-6]-0^{2}=6(-6)=-36$ A saddle point D-test for $(0,2): D=[6(0)+6][6(2)-6]-0^{2}=6(6)=36$ either a maximum or a minimum; concave up means minimum
D-test for $(-2,0):=[6(-2)+6][6(0)-6]-0^{2}=(-6)(-6)=36$ either a maximum or a minimum; concave down, so it's a maximum
D-test for $(-2,2):[6(-2)+6][6(2)-6]-0^{2}=(-6)(6)=-36$ A saddle point.

Example.
Find all the critical points and characterize them for the function $f(x, y)=9 x^{3}+\frac{1}{3} y^{3}-4 x y$

$$
f_{x}=27 x^{2}-4 y
$$

$$
\begin{gathered}
f_{y}=y^{2}-4 x \\
f_{x x}=54 x \\
f_{y y}=2 y \\
f_{x y}=4
\end{gathered}
$$

Critical points.

$$
\begin{gathered}
27 x^{2}-4 y=0 \\
y^{2}-4 x=0 \\
y^{2}=4 x \\
x=\frac{1}{4} y^{2} \\
27 x^{2}-4 y=0 \\
27\left(\frac{1}{4} y^{2}\right)^{2}-4 y=0 \\
\frac{27}{16} y^{4}-4 y=0 \\
27 y^{4}-64 y=0 \\
y\left(27 y^{3}-64\right)=0 \\
y=0,27 y^{3}=64 \\
y=0, y=\sqrt[3]{\frac{64}{27}}=\frac{4}{3} \\
x=\frac{1}{4} y^{2} \\
x=\frac{1}{4}(0)^{2}=0 \\
x=\frac{1}{4}\left(\frac{4}{3}\right)^{2}=\frac{1}{4}\left(\frac{16}{9}\right)=\frac{4}{9}
\end{gathered}
$$

Critical point $(0,0)$ and $\left(\frac{4}{9}, \frac{4}{3}\right)$
D-test for (0,0): $D=54(0) 2(0)-4^{2}=0-16=-16$ A saddle point.
D-test for $\left(\frac{4}{9}, \frac{4}{3}\right): D=54\left(\frac{4}{9}\right) 2\left(\frac{4}{3}\right)-4^{2}=24\left(\frac{8}{3}\right)-16=64-16=48$ either a maximum or a minimum, and the unmixed second partials are both positive, concave up which means a minimum.

Example.
Find all the critical points and characterize them for the function $f(x, y)=x y+2 x-\ln \left(x^{2} y\right), x>$ $0, y>0$

$$
f(x, y)=x y+2 x-\left(\ln x^{2}+\ln y\right)=x y+2 x-2 \ln x-\ln y
$$

$$
\begin{gathered}
f_{x}=y+2-\frac{1}{x} \\
f_{y}=x-\frac{1}{y} \\
f_{x x}=\frac{1}{x^{2}} \\
f_{y y}=\frac{1}{y^{2}} \\
f_{x y}=1 \\
y+2-\frac{1}{x}=0 \\
x-\frac{1}{y}=0 \\
x=\frac{1}{y} \\
y+2-\frac{1}{\frac{1}{y}}=y+2-y=0 \\
2=0
\end{gathered}
$$

Not possible.
No critical points on this function.

Curve Sketching

Use properties of the derivative, and second derivative (and some algebra) to sketch a graph of a function without technology.

Examples.
Sketch the graph of $f(x)=x^{4}-8 x^{2}+3$

$$
\begin{gathered}
f^{\prime}(x)=4 x^{3}-16 x \\
4 x^{3}-16 x=0 \\
4 x\left(x^{2}-4\right)=0 \\
4 x(x-2)(x+2)=0 \\
x=0,2,-2
\end{gathered}
$$

Three critical points.

$$
\begin{gathered}
f^{\prime \prime}(x)=12 x^{2}-16 \\
12 x^{2}-16=0 \\
3 x^{2}-4=0 \\
x^{2}=\frac{4}{3} \\
x= \pm \frac{2}{\sqrt{3}} \approx \pm 1.1547 \ldots
\end{gathered}
$$

Two inflection points.

Example.
Sketch the graph of the function $f(x)=\frac{2}{x^{2}+1}$
For rational functions, use any horizontal and vertical asymptotes you can find algebraically.
This function has no vertical asymptotes because the denominator cannot be zero. There is a horizontal asymptote at $\mathrm{y}=0$.

$$
\begin{gathered}
f(x)=2\left(x^{2}+1\right)^{-1} \\
f^{\prime}(x)=2(-1)\left(x^{2}+1\right)^{-2}(2 x)=-4 x\left(x^{2}+1\right)^{-2}=\frac{-4 x}{\left(x^{2}+1\right)^{2}} \\
-\frac{4 x}{\left(x^{2}+1\right)^{2}}=0 \\
-4 x=0
\end{gathered}
$$

$$
x=0
$$

$$
f^{\prime \prime}(x)=-4\left(x^{2}+1\right)^{-2}-4 x(-2)\left(x^{2}+1\right)^{-3}(2 x)=-\frac{4}{\left(x^{2}+1\right)^{2}}+\frac{16 x^{2}}{\left(x^{2}+1\right)^{3}}=\frac{-4\left(x^{2}+1\right)+16 x^{2}}{\left(x^{2}+1\right)^{3}}
$$

$$
\begin{gathered}
-4\left(x^{2}+1\right)+16 x^{2}=0 \\
-4 x^{2}-4+16 x^{2}=0 \\
12 x^{2}-4=0 \\
3 x^{2}-1=0 \\
x= \pm \sqrt{\frac{1}{3}}= \pm \frac{1}{\sqrt{3}} \approx 0.577 \ldots
\end{gathered}
$$

Sketching without a function.
Example.
$f(1)=3, f^{\prime}(1)=0,(1,3)$ is a maximum

Example.
$f^{\prime}(x)>0$ on $(-\infty, 1)$, and $f^{\prime}(x)<0$ on (1,3), and $f^{\prime}(x)>0$ on $(3, \infty)$

$$
f^{\prime \prime}(1)<0, f^{\prime \prime}(3)>0
$$

Sketch the original function from the graph of its derivative.

The derivative is equal to 0 at 0 and 5 .

F is cubic, the derivative is quadratic, and the second derivative is linear.
Exam \#1.
Chapter 2 (up to 2.8), and 4.1, 4.2 of Chapter 4

