Volumes of Solids of Revolution:
Disk/Washer Method (volumes by slicing) (2.2 of the online text book)
Shell Method (2.3 of the online text book)

Disk/Washer Method

Suppose we have the function $f(x)=x+1$, rotate around the x-axis between $[0,2]$.

If I take a little rectangle and I rotate that rectangle around the x-axis, I end up with a cylinder. The radius of that cylinder is the height of the function, and therefore the area of the face is $A=\pi r^{2}=\pi\left[f\left(x_{i}\right)\right]^{2}$, Then the volume of the disk is the width of the original rectangle times the area of the face:

$$
V=\pi\left[f\left(x_{i}\right)\right]^{2} \Delta x
$$

Total volume estimate: $V=\sum_{i=1}^{n} \pi\left[f\left(x_{i}\right)\right]^{2} \Delta x$

$$
\begin{gathered}
V=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \pi\left[f\left(x_{i}\right)\right]^{2} \Delta x=\int_{a}^{b} \pi[f(x)]^{2} d x \\
\pi \int_{0}^{2}(x+1)^{2} d x=\pi \int_{0}^{2} x^{2}+2 x+1 d x=\pi\left[\frac{1}{3} x^{3}+x^{2}+x\right]_{0}^{2}=\pi\left[\frac{8}{3}+4+2\right]=\frac{26 \pi}{3}
\end{gathered}
$$

Disk method because the region we are rotating touches the axis of rotation.

Washer method:

Find the volume of revolution from rotating the region bounded by $y=x^{2}$ and $y=\sqrt{x}$ around the x axis.

$$
V=\pi \int_{a}^{b}\left[\text { Radius }_{\text {outer }}^{2}-\text { Radius }_{\text {inner }}^{2}\right] d x=\pi \int_{a}^{b}[f(x)]^{2} d x-\pi \int_{a}^{b}[g(x)]^{2} d x
$$

To find the volume, the outer radius is the square root of x, the inner radius is x^{2} function.

$$
V=\pi \int_{0}^{1}(\sqrt{x})^{2}-\left(x^{2}\right)^{2} d x=\pi \int_{0}^{1} x-x^{4} d x=\pi\left[\frac{1}{2} x^{2}-\frac{1}{5} x^{5}\right]_{0}^{1}=\pi\left[\frac{1}{2}-\frac{1}{5}\right]=\frac{3 \pi}{10}
$$

Rotating around any line parallel to the x-axis.

Find the volume of revolution of the region bounded by $y=\sqrt{x}$ and $y=x^{2}$ rotated around the line $y=-2$.

Radius of the outer surface: the function minus the axis of rotation: $R_{\text {outer }}=\sqrt{x}-(-2)=\sqrt{x}+2$ Radius of the inner surface: the function minus the axis of rotation: $R_{\text {inner }}=x^{2}-(-2)=x^{2}+2$

$$
\begin{gathered}
V=\pi \int_{0}^{1}(\sqrt{x}+2)^{2}-\left(x^{2}+2\right)^{2} d x=\pi \int_{0}^{1} x+4 \sqrt{x}+4-\left(x^{4}+4 x^{2}+4\right) d x= \\
\pi \int_{0}^{1} x+4 \sqrt{x}-x^{4}-4 x^{2} d x=\pi\left[\frac{1}{2} x^{2}+4\left(\frac{2}{3}\right) x^{\frac{3}{2}}-\frac{1}{5} x^{5}-\frac{4}{3} x^{3}\right]_{0}^{1}=\pi\left[\frac{1}{2}+\frac{8}{3}-\frac{1}{5}-\frac{4}{3}\right]=\frac{49 \pi}{30}
\end{gathered}
$$

If you are rotating around a line parallel to the x-axis but above the region:

Rotate the region around the line $y=2$ (above the region)
The square root is now the inner radius because it's closer to the line $y=2$, and the square function is further from the line $y=2$ so it's the outer radius.

Radius is the axis of rotation minus the function because the axis of rotation here is larger than the function values.

$$
V=\pi \int_{0}^{1}\left(2-x^{2}\right)^{2}-(2-\sqrt{x})^{2} d x
$$

You can use the disk/washer method to rotate around the y-axis but...

The axis of rotation and the primary axis of rotation need to be the same variable. Functions of x (i.e. $f(x)$) rotate around the x-axis (or lines parallel to the x-axis) using the disk or washer method.

If I want to use this method to rotate around the y-axis, then I need a function of y, i.e. $x=f(y)$
Find the volume of the solid of revolution bounded by $x=y^{2}, x=2 y$ rotated around the y-axis.

Washer/Disk: the function and the variable of the axis of rotation need to match. (axis of rotation: we mean the principal axis: is the line parallel to x-axis or the y-axis?)

Shell method.
We have a function of x, and we are rotating around the y-axis (around the opposite axis of the variable).
Find the volume of the solid of revolution bounded by the function $f(x)=4 x-x^{2}$ and the x-axis, rotated around the y-axis.

Cylinder: height of the function $f\left(x_{i}\right)$, radius of the cylinder: x_{i}
Fold out the hollow cylinder into a rectangle: height of the rectangle is the height of the cylinder. What is the width of the rectangle: it's the circumference of the circle at the top of the tube: $C=2 \pi r$

Area of the rectangle: $f\left(x_{i}\right)\left(2 \pi x_{i}\right)$
The volume is now the thickness of the rectangle $=$ the thick of the original rectangle that we rotated: Δx
Volume estimate for one shell: $V=2 \pi x_{i} f\left(x_{i}\right) \Delta x$

$$
V_{e s t}=\sum_{i=1}^{n} 2 \pi x_{i} f\left(x_{i}\right) \Delta x
$$

Volume:

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} 2 \pi x_{i} f\left(x_{i}\right) \Delta x=2 \pi \int_{a}^{b} x f(x) d x
$$

Volume for the example:

$$
V=2 \pi \int_{0}^{4} x\left(4 x-x^{2}\right) d x=2 \pi \int_{0}^{4} 4 x^{2}-x^{3} d x=2 \pi\left[\frac{4}{3} x^{3}-\frac{1}{4} x^{4}\right]_{0}^{4}=2 \pi\left[\frac{256}{3}-64\right]=\frac{128 \pi}{3}
$$

With a top and bottom function:

$$
V=2 \pi \int_{a}^{b} x(f(x)-g(x)) d x
$$

To find the volume of the solid of revolution bounded by $y=4 x-x^{2}$ and $y=x^{2}-4 x$ rotated around the y-axis:

If you are rotating around a line parallel to the y-axis, this does not change the height of the functions, but it does change the radius of shells.

Rotate the region around the line $x=-2$

New radius is the x minus the axis of rotation: $x-(-2)=x+2$

$$
V=2 \pi \int_{0}^{4}(x+2)\left(4 x-x^{2}\right) d x
$$

If the new radius is to the right of the region, then the radius becomes the axis of rotation minus x.

$$
V=2 \pi \int_{0}^{4}(6-x)\left(4 x-x^{2}\right) d x
$$

Axes of rotation can never be inside the region.
To use the shell method to rotate around the x-axis, but you would need a function of y to do it.

rotate this region around the x-axis.

$$
V=2 \pi \int_{0}^{2} y\left(2 y-y^{2}\right) d y
$$

