Arclength and surface area of revolution (2.4)

From the arclength handout, we found that

$$
s=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
$$

Linear example.
Find the length of arc along the function $y=3 x$ on the interval $[0,3]$

$$
s=\int_{0}^{3} \sqrt{1+(3)^{2}} d x=\int_{0}^{3} \sqrt{1+9} d x=\int_{0}^{3} \sqrt{10} d x=3 \sqrt{10}
$$

Starting point at $x=0$ is $(0,0)$, and the ending point at $x=3,(3,9)$

$$
d=\sqrt{(3-0)^{2}+(9-0)^{2}}=\sqrt{9+81}=\sqrt{90}=3 \sqrt{10}
$$

Some functions that will work well algebraically with the arclength formula:
Some hyperbolic cosine functions (circle: $x^{2}+y^{2}=1$, but hyperbolic: $x^{2}-y^{2}=1$)

Instead of

$$
\begin{gathered}
\cosh ^{2} x-\sinh ^{2} x=1 \\
\cos ^{2} x+\sin ^{2} x=1 \\
\frac{d}{d x}(\sinh x)=\cosh x \\
\frac{d}{d x}(\cosh x)=\sinh x \\
\sinh (x)=\frac{e^{x}-e^{-x}}{2} \\
\cosh x=\frac{e^{x}+e^{-x}}{2}
\end{gathered}
$$

Another example that works well is $y=x^{\frac{3}{2}}$
Another example that works well is $y=\ln (\cos x)$
Another class of functions that work well has a form with a polynomial, and rational term. So that when you take the derivative you get $x^{\wedge} n$ for the polynomial and $x^{\wedge}-n$ for the rational term (give or take a constant)

Find the length of arc of the function $y=\cosh x$ from $[0,1]$.

$$
y^{\prime}=\sinh x
$$

$$
\begin{aligned}
s=\int_{0}^{1} \sqrt{1+\sinh ^{2} x} d x= & \int_{0}^{1} \sqrt{\cosh ^{2} x} d x=\int_{0}^{1} \cosh x d x=\left.\sinh x\right|_{0} ^{1}=\sinh 1 \\
= & \frac{e^{1}-e^{-1}}{2}=\frac{1}{2}\left(e-\frac{1}{e}\right) \\
& \cosh ^{2} x-\sinh ^{2} x=1 \\
& \cosh ^{2} x=1+\sinh ^{2} x
\end{aligned}
$$

Find the length of arc of the function $y=x^{\frac{3}{2}}$ on the interval $[1,4]$

$$
\begin{gathered}
s=\int_{1}^{4} \sqrt{1+\left(\frac{3}{2} x^{\frac{1}{2}}\right)^{2}} d x=\int_{1}^{4} \sqrt{1+\frac{9}{4}} x d x \\
u=1+\frac{9}{4} x, d u=\frac{9}{4} d x \rightarrow \frac{4}{9} d u=d x \\
s=\int_{13 / 4}^{10} \frac{4}{9} u^{\frac{1}{2}} d u=\left.\frac{4}{9}\left(\frac{2}{3}\right) u^{\frac{3}{2}}\right|^{10}{ }_{13 / 4}=\frac{8}{27}\left[10^{\frac{3}{2}}-\left(\frac{13}{4}\right)^{\frac{3}{2}}\right]
\end{gathered}
$$

From textbook, 2.4 \#177: $y=\frac{x^{4}}{4}+\frac{1}{8 x^{2}}=\frac{1}{4} x^{4}+\frac{1}{8} x^{-2}$ on the interval $[1,2]$

$$
\begin{gathered}
y^{\prime}=x^{3}-\frac{1}{4} x^{-3} \\
s=\int_{1}^{2} \sqrt{1+\left(x^{3}-\frac{1}{4} x^{-3}\right)^{2}} d x=\int_{1}^{2} \sqrt{1+x^{6}-\frac{1}{4}-\frac{1}{4}+\frac{1}{16} x^{-6} d x}= \\
\int_{1}^{2} \sqrt{1+x^{6}-\frac{1}{2}+\frac{1}{16} x^{-6}} d x=\int_{1}^{2} \sqrt{x^{6}+\frac{1}{2}+\frac{1}{16} x^{-6}} d x=\int_{1}^{2} \sqrt{\left(x^{3}+\frac{1}{4} x^{-3}\right)^{2}} d x \\
=\int_{1}^{2} x^{3}+\frac{1}{4} x^{-3} d x=\frac{1}{4} x^{4}-\left.\frac{1}{8 x^{2}}\right|_{1} ^{2}=\frac{1}{4}(16)-\frac{1}{32}-\frac{1}{4}+\frac{1}{8}=\frac{123}{32}
\end{gathered}
$$

Find the length of arc of the function $y=x^{3}$ on the interval $[0,2]$.

$$
s=\int_{0}^{2} \sqrt{1+\left(3 x^{2}\right)^{2}} d x=\int_{0}^{2} \sqrt{1+9 x^{4}} d x
$$

Do it numerically in your calculator: MATH \rightarrow 9: FnInt fnInt(function, x, lower limit, upper limit)
fnInt(sqrt(1+9x^4), $x, 0,2$)

Surfaces of revolution.
Suppose I take the function $y=x^{2}$ and I rotate it around the x-axis on the interval $[0,2]$. Find the surface area of revolution.

$$
S=2 \pi \int_{a}^{b} r(x) \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
$$

Rotating around the x-axis: the $r(x)=f(x)$, if you are rotating around the y-axis, then $r(x)=x$ In this example:

$$
S A=2 \pi \int_{0}^{2} x^{2} \sqrt{1+(2 x)^{2}} d x=2 \pi \int_{0}^{2} x^{2} \sqrt{1+4 x^{2}} d x
$$

If I rotated around the y-axis

$$
S=2 \pi \int_{0}^{2} x \sqrt{1+4 x^{2}} d x
$$

This example rotated around the y-axis, this is integrable by hand using u-substitution.

If you rotate $y=x^{3}$ around the x-axis

$$
S=2 \pi \int_{a}^{b} x^{3} \sqrt{1+9 x^{4}} d x
$$

If you rotate around the y-axis

$$
S=2 \pi \int_{a}^{b} x \sqrt{1+9 x^{4}} d x
$$

Here the y-axis one cannot be done (yet), but the x-axis one can be done with regular u-sub.

Next sections: Work, probably applications, centers of mass

