Review of series tests to date
Ratio and Root Tests

So, far, we have 8 series test:

1) Geometric series test (if it converges, we can find the exact sum)
2) Telescoping series test (if it converges, we can find the exact sum)
3) Divergence test - only tests for divergence, not convergence
4) Integral test - (we can estimate the error on the sum after N terms)
5) P-series test - powers of n in the denominator
6) Alternating series test - (we can estimate the error on the sum after N terms)
7) Direct Comparison Test
8) Limit Comparison Test

The last two series test that we have to cover are the ratio and root tests.

Ratio Test
Given the infinite series $\sum_{n=0}^{\infty} a_{n}$, if $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|<1$ then the series will converge, and if $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|>1$, the series will diverge, and if $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=1$, then the test is inconclusive.

If $a_{n}=r^{n}$, then $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{r^{n+1}}{r^{n}}\right|=|r|<1$, then the series converges, and $r \geq 1$ the series diverges.

Consider $\sum_{n=1}^{\infty} \frac{1}{n}$ vs. $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$
We know from the integral test that the harmonic series diverges, and the second one (a p-series) converges.

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \frac{\frac{1}{n+1}}{\frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{n}{n+1}=1 \\
\lim _{n \rightarrow \infty} \frac{\frac{1}{(n+1)^{2}}}{\frac{1}{n^{2}}}=\lim _{n \rightarrow \infty} \frac{n^{2}}{(n+1)^{2}}=\lim _{n \rightarrow \infty} \frac{n^{2}}{n^{2}+2 n+1}=\lim _{n \rightarrow \infty} \frac{2 n}{2 n+2}=\lim _{n \rightarrow \infty} \frac{2}{2}=1
\end{gathered}
$$

Typically, the ratio test does poorly with polynomial or rational function terms.
Does a good job with anything raised to a power of n, and factorials.

Examples.

$$
\sum_{n=1}^{\infty} \frac{n^{3}}{3^{n}}
$$

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \frac{\left(\frac{(n+1)^{3}}{3^{n+1}}\right)}{\frac{n^{3}}{3^{n}}}=\lim _{n \rightarrow \infty}\left[\frac{(n+1)^{3}}{3^{n+1}} \times \frac{3^{n}}{n^{3}}\right]=\lim _{n \rightarrow \infty} \frac{(n+1)^{3}}{n^{3}} \times \lim _{n \rightarrow \infty} \frac{3^{n}}{3^{n+1}}= \\
\lim _{n \rightarrow \infty} \frac{n^{3}+3 n^{2}+3 n+1}{n^{3}} \times \lim _{n \rightarrow \infty} \frac{3^{n}}{3^{n}(3)}=\lim _{n \rightarrow \infty} \frac{\frac{n^{3}}{n^{3}}+\frac{3 n^{2}}{n^{3}}+\frac{3 n}{n^{3}}+\frac{1}{n^{3}}}{\frac{n^{3}}{n^{3}}} \times \lim _{n \rightarrow \infty} \frac{1}{3}= \\
\lim _{n \rightarrow \infty} \frac{1+\frac{3}{n}+\frac{3}{n^{2}}+\frac{1}{n^{3}}}{1} \times\left(\frac{1}{3}\right)=1 \times \frac{1}{3}=\frac{1}{3}<1
\end{gathered}
$$

Example.

$$
\begin{gathered}
\sum_{n=0}^{\infty} \frac{2^{n}}{n!} \\
\lim _{n \rightarrow \infty}\left(\frac{2^{n+1}}{(n+1)!}\right) \times \frac{n!}{2^{n}}=\lim _{n \rightarrow \infty} \frac{n!}{(n+1)!} \times \frac{2^{n+1}}{2^{n}}=\lim _{n \rightarrow \infty} \frac{n!}{n!(n+1)} \times \frac{2^{n}(2)}{2^{n}}=\lim _{n \rightarrow \infty} \frac{2}{n+1}=0
\end{gathered}
$$

Converges by the ratio test.
Example.

$$
\begin{gathered}
\sum_{n=0}^{\infty} \frac{(-1)^{n}(n!)^{2}}{(2 n)!} \\
\lim _{n \rightarrow \infty}\left|\frac{(-1)^{(n+1)}[(n+1)!]^{2}}{(2(n+1))!} \times \frac{(2 n)!}{(-1)^{n}(n!)^{2}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n}(-1)(n+1)!(n+1)!}{(2 n+2)!} \times \frac{(2 n)!}{(-1)^{n}(n!)(n!)}\right|= \\
\lim _{n \rightarrow \infty}\left|\frac{(n+1) n!(n+1) n!}{(2 n+2)(2 n+1)(2 n)!} \times \frac{(2 n)!}{(n!)(n!)}\right|=\lim _{n \rightarrow \infty}\left|\frac{(n+1)(n+1)}{(2 n+2)(2 n+1)} \times \frac{1}{1}\right|=\frac{1}{4}<1
\end{gathered}
$$

Converges

Example.

$$
\begin{gathered}
\sum_{n=1}^{\infty} \frac{n^{n}}{n!} \\
\lim _{n \rightarrow \infty} \frac{(n+1)^{n+1}}{(n+1)!} \times \frac{n!}{n^{n}}=\lim _{n \rightarrow \infty} \frac{(n+1)^{n}(n+1)}{(n+1) n!} \times \frac{n!}{n^{n}}=\lim _{n \rightarrow \infty} \frac{(n+1)^{n}}{1} \times \frac{1}{n^{n}}=\lim _{n \rightarrow \infty} \frac{(n+1)^{n}}{n^{n}}= \\
\lim _{n \rightarrow \infty}\left(\frac{n+1}{n}\right)^{n}=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e
\end{gathered}
$$

$$
\begin{gathered}
\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=L \\
\lim _{n \rightarrow \infty} \ln \left(1+\frac{1}{n}\right)^{n}=\ln L=\lim _{n \rightarrow \infty} n \ln \left(1+\frac{1}{n}\right)=\lim _{n \rightarrow \infty} \frac{\ln \left(1+\frac{1}{n}\right)}{n^{-1}}=\lim _{n \rightarrow \infty} \frac{\ln \left(1+\frac{1}{n}\right)}{\frac{1}{n}}=\frac{0}{0} \\
\frac{1}{1+\frac{1}{n}}\left(-\frac{1}{n^{2}}\right) \\
\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \\
1=\lim _{n \rightarrow \infty} \frac{1}{1+\frac{1}{n}}=1 \\
1=\ln L \rightarrow L=e
\end{gathered}
$$

$e>1$, so the series diverges
Root Test
Given the series $\sum_{n=1}^{\infty} a_{n}$, if the $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}<1$ the series converges, and if $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}>1$, the series diverges. And if $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=1$ the test is inconclusive.

$$
\lim _{n \rightarrow \infty} \sqrt[n]{n}=1
$$

Consider $\sum \frac{1}{n}$ and $\sum \frac{1}{n^{2}}$

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \sqrt[n]{\frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{1}{\sqrt[n]{n}}=1 \\
\lim _{n \rightarrow \infty} \sqrt[n]{\frac{1}{n^{2}}}=\lim _{n \rightarrow \infty} \frac{1}{(\sqrt[n]{n})^{2}}=1
\end{gathered}
$$

The root test also tends to be inconclusive with rational and polynomial terms.
Root test is messy to use on factorials - you would need to use a replacement approximation that relates factorials to an exponential expression. I recommend using the ratio test for anything that has a factorial in it.
Geometric combined with polynomial components, or expressions raised to a common power of n are the best for the root test.

Example.

$$
\sum_{n=1}^{\infty} \frac{n^{3}}{3^{n}}
$$

$$
\lim _{n \rightarrow \infty} \sqrt[n]{\frac{n^{3}}{3^{n}}}=\lim _{n \rightarrow \infty} \frac{(\sqrt[n]{n})^{3}}{\sqrt[n]{3^{n}}}=\lim _{n \rightarrow \infty} \frac{(\sqrt[n]{n})^{3}}{3}=\frac{1}{3}<1
$$

Converges by the root test.

Example.

$$
\begin{gathered}
\sum_{n=1}^{\infty} \frac{\left(n^{2}+3 n\right)^{n}}{\left(4 n^{2}+5\right)^{n}}=\sum_{n=1}^{\infty}\left(\frac{n^{2}+3 n}{4 n^{2}+5}\right)^{n} \\
\lim _{n \rightarrow \infty} \sqrt[n]{\left(\frac{n^{2}+3 n}{4 n^{2}+5}\right)^{n}}=\lim _{n \rightarrow \infty} \frac{n^{2}+3 n}{4 n^{2}+5}=\frac{1}{4}<1
\end{gathered}
$$

Converges by the root test.

Example.

$$
\begin{gathered}
\sum_{n=2}^{\infty} \frac{n^{n}}{(\ln n)^{n}} \\
\lim _{n \rightarrow \infty} \sqrt[n]{\frac{n^{n}}{(\ln n)^{n}}}=\lim _{n \rightarrow \infty} \frac{n}{\ln n}=\lim _{n \rightarrow \infty} \frac{1}{1 / n}=\lim _{n \rightarrow \infty} n=\infty
\end{gathered}
$$

Diverges by the root test.

Power Series

Infinite series where there is an x raised to the nth power in the expression.
For what values of x does the series converge?

Example.

$$
\begin{gathered}
\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \\
\lim _{n \rightarrow \infty} \frac{x^{n+1}}{(n+1)!} \times \frac{n!}{x^{n}}=\lim _{n \rightarrow \infty} \frac{x^{n}(x)}{(n+1) n!} \times \frac{n!}{x^{n}}=\lim _{n \rightarrow \infty} \frac{1(x)}{(n+1)} \times \frac{1}{1}=0
\end{gathered}
$$

In the limit, think about x as any fixed value, and so n will (eventually) be bigger than x and the limit will go to 0 .

Where does this converge? It converges for all real numbers, and the radius of convergence here is infinity.

Example.

$$
\begin{gathered}
\sum_{n=1}^{\infty} \frac{(x-2)^{n}}{(n+1) 3^{n}} \\
\lim _{n \rightarrow \infty}\left|\frac{(x-2)^{n+1}}{(n+2) 3^{n+1}} \times \frac{(n+1) 3^{n}}{(x-2)^{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(x-2)^{n}(x-2)}{(n+2) 3^{n}(3)} \times \frac{(n+1) 3^{n}}{(x-2)^{n}}\right|= \\
\lim _{n \rightarrow \infty}\left|\frac{(x-2)}{(n+2)(3)} \times \frac{(n+1)}{1}\right|=\lim _{n \rightarrow \infty}\left|\frac{(x-2)}{3} \times \frac{(n+1)}{(n+2)}\right|=\lim _{n \rightarrow \infty}\left|\frac{(x-2)}{3} \times 1\right|<1 \\
\\
\left|\frac{x-2}{3}\right|<1 \\
-1<\frac{x-2}{3}<1 \\
-3<x-2<3
\end{gathered}
$$

Radius of convergence: 3

$$
-1<x<5
$$

Interval of convergence is $(-1,5)$... so far.
If the series converges on an interval (a, b), the radius of convergence is $\frac{b-a}{2}$

$$
\frac{5-(-1)}{2}=\frac{6}{2}=3
$$

We need to test the endpoints where the ratio test $=1$ by another test.
Test $x=-1$, and $x=5$
Check $x=-1$

$$
\sum_{n=1}^{\infty} \frac{(-1-2)^{n}}{(n+1) 3^{n}}=\sum_{n=1}^{\infty} \frac{(-3)^{n}}{(n+1) 3^{n}}=\sum_{n=1}^{\infty} \frac{(-1)^{n}(3)^{n}}{(n+1) 3^{n}}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{(n+1)}
$$

This converges by the alternating series test.
Check $x=5$

$$
\sum_{n=1}^{\infty} \frac{(5-2)^{n}}{(n+1) 3^{n}}=\sum_{n=1}^{\infty} \frac{(3)^{n}}{(n+1) 3^{n}}=\sum_{n=1}^{\infty} \frac{1}{(n+1)}
$$

By the limit comparison test

$$
\lim _{n \rightarrow \infty} \frac{\frac{1}{n+1}}{\frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{n}{n+1}=1
$$

They converge or diverge together and $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges by the p -series test (or the integral test), so this also diverges.

The final interval of convergence is $[-1,5$)
It is possible to have intervals of convergence that are open on both ends (a, b), or closed on one end and not the other ($a, b]$, or $[a, b)$, or converge on both ends $[a, b]$.

Typically depends if there is an extra n term in the denominator:
No n means both endpoints will diverge (or in the numerator)
One n means one but not the other will converge
n^{2} or higher, then both ends will converge

