3/21/2024

Functions as Power Series (6.1)
Convergence/Properties of Power Series (6.2)

Recall:
From the geometric series test:

$$
\begin{aligned}
& S=\frac{a}{1-r} \leftrightarrow \sum_{n=0}^{\infty} a\left(r^{n}\right) \\
& f(x)=\frac{a}{1-x}=\sum_{n=0}^{\infty} a x^{n}
\end{aligned}
$$

Example.
Find the power series representation of the function $f(x)=\frac{5}{1-2 x}$.

$$
\begin{gathered}
a=5, r=2 x \\
f(x)=\sum_{n=0}^{\infty} 5(2 x)^{n}=\sum_{n=0}^{\infty} 5\left(2^{n}\right) x^{n}
\end{gathered}
$$

Example.
Find the power series representation of the function $f(x)=\frac{3 x}{1+x^{2}}=\frac{3 x}{1-\left(-x^{2}\right)}$

$$
\begin{gathered}
a=3 x, r=-x^{2} \\
f(x)=\sum_{n=0}^{\infty} 3 x\left(-x^{2}\right)^{n}=\sum_{n=0}^{\infty}(-1)^{n} 3 x\left(x^{2 n}\right)=\sum_{n=0}^{\infty}(-1)^{n} 3 x^{2 n+1}
\end{gathered}
$$

$$
f(x) \approx 3 x-3 x^{3}+3 x^{5}-3 x^{7}+3 x^{9}-\cdots
$$

Example.
Find the power series representation for the function $f(x)=\frac{7}{3-4 x}$

The constant in the denominator is not 1 . Multiply by something to make that constant $=1$.

$$
\begin{gathered}
\frac{7}{3-4 x} \times \frac{\frac{1}{3}}{\frac{1}{3}}=\frac{\left(\frac{7}{3}\right)}{1-\frac{4}{3} x} \\
a=\frac{7}{3}, r=\left(\frac{4}{3} x\right) \\
f(x)=\sum_{n=0}^{\infty} \frac{7}{3}\left(\frac{4}{3} x\right)^{n}=\sum_{n=0}^{\infty} 7\left(\frac{1}{3}\right)\left(\frac{1}{3}\right)^{n} 4^{n} x^{n}=\sum_{n=0}^{\infty} 7\left(4^{n}\right) 3^{-n-1} x^{n}=\sum_{n=0}^{\infty} \frac{7\left(4^{n}\right)}{3^{n+1}} x^{n}
\end{gathered}
$$

Example.
Find the power series representation of the function $f(x)=\frac{4}{3 x-1}$

$$
\begin{gathered}
\frac{4}{3 x-1} \times \frac{-1}{-1}=-\frac{4}{1-3 x} \\
a=-4, r=3 x \\
f(x)=\sum_{n=0}^{\infty}(-4)(3 x)^{n}=\sum_{n=0}^{\infty}(-4) 3^{n} x^{n}
\end{gathered}
$$

So far, all of our examples have been centered at $\mathrm{c}=0$.
We can expand our power series at points other than 0.

Example.
Find the power series representation of the function $f(x)=\frac{1}{x}$

$$
\frac{1}{x}=\frac{1}{1-1+x}=\frac{1}{1-(1-x)}
$$

If I center the power series at another point, other than $0, I$ can replace x in the power series with a linear expression in $x,(x-c)$

$$
\begin{gathered}
a=1, r=(1-x)=(-1)(x-1) \\
f(x)=\sum_{n=0}^{\infty} 1[(-1)(x-1)]^{n}=\sum_{n=0}^{\infty}(-1)^{n}(x-1)^{n}
\end{gathered}
$$

Example.

Find the power series representation of the function $f(x)=\frac{5}{2-3 x^{\prime}}$, centered at $x=4$.

$$
\begin{gathered}
\frac{5}{2-3 x}=\frac{5}{2-3(x-4)-12}=\frac{5}{2-3 x+12-12}=\frac{5}{-10-3(x-4)} \times \frac{\left(-\frac{1}{10}\right)}{\left(-\frac{1}{10}\right)}=\frac{\left(-\frac{1}{2}\right)}{1+\frac{3}{10}(x-4)} \\
a=-\frac{1}{2}, r=-\frac{3}{10}(x-4) \\
f(x)=\sum_{n=0}^{\infty}\left(-\frac{1}{2}\right)\left[\left(-\frac{3}{10}\right)(x-4)\right]^{n}=\sum_{n=0}^{\infty}\left(-\frac{1}{2}\right)\left(-\frac{3}{10}\right)^{n}(x-4)^{n}=\sum_{n=0}^{\infty} \frac{(-1)^{n+1} 3^{n}}{2 \cdot 10^{n}}(x-4)^{n}
\end{gathered}
$$

We can adjust the constant in the denominator to match the formula (1- something) We can shift the center off of zero
We can fix the minus sign if we have ($1+$ something)
We can also find power series formulas for functions whose derivatives are rational expressions.
These include $f(x)=\ln x, g(x)=\arctan x$
First take the derivative of the target function: $g^{\prime}(x)=\frac{1}{1+x^{2}}$
Then, find a power series representation for the derivative Then, take the antiderivative to obtain the power series for the original function.

$$
\begin{gathered}
a=1, r=-x^{2} \\
g^{\prime}(x)=\sum_{n=0}^{\infty}\left(-x^{2}\right)^{n}=\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}
\end{gathered}
$$

$$
\int g^{\prime}(x) d x=g(x)=\int \sum_{n=0}^{\infty}(-1)^{n} x^{2 n} d x=\sum_{n=0}^{\infty} \int(-1)^{n} x^{2 n} d x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1}
$$

Additional formulas can be obtained by taking the derivative of our initial power series formula.

$$
a(1-r)^{-1}=\frac{a}{1-r}=\sum_{n=0}^{\infty} a\left(r^{n}\right)
$$

Take the derivative on both sides with respect to r .

$$
a(-1)(1-r)^{-2}(-1)=\frac{a}{(1-r)^{2}}=\sum_{n=1}^{\infty} a n r^{n-1}=\sum_{k=0}^{\infty} a(k+1) r^{k}
$$

Reindexing: replacing n with $\mathrm{k}+1$

$$
\begin{gathered}
a(-2)(1-r)^{-3}(-1)=\frac{2 a}{(1-r)^{3}}=\sum_{n=2}^{\infty} a n(n-1) r^{n-2}=\sum_{k=0}^{\infty} a(k+2)(k+1) r^{k} \\
2 a(-3)(1-r)^{-4}(-1)=\frac{6 a}{(1-r)^{4}}=\sum_{n=3}^{\infty} a n(n-1)(n-2) r^{n-3}=\sum_{k=0}^{\infty} a(k+3)(k+2)(k+1) r^{k}
\end{gathered}
$$

And so on... and each time reindex the starting value to start at 0 .
Replace $n=k+2$
Replace $n=k+3$
Example.
Find a power series representation for the function $f(x)=\frac{7 x}{\left(1-\frac{1}{2} x^{2}\right)^{3}}$
Notice that the denominator is raised (all of it) to a cube power.
The derivative is for a rational expression with the entire denominator raised to the cube power.

$$
\begin{gathered}
\frac{2 a}{(1-r)^{3}}=\sum_{k=0}^{\infty} a(k+2)(k+1) r^{k} \\
2 a=7 x, a=\frac{7}{2} x, r=\frac{1}{2} x^{2} \\
f(x)=\sum_{k=0}^{\infty}\left(\frac{7}{2} x\right)(k+2)(k+1)\left(\frac{1}{2} x^{2}\right)^{k}=\sum_{k=0}^{\infty} 7\left(\frac{1}{2}\right)^{k+1} x(k+2)(k+1) x^{2 k}= \\
\sum_{k=0}^{\infty} 7\left(\frac{1}{2}\right)^{k+1}(k+2)(k+1) x^{2 k+1}
\end{gathered}
$$

Example.
Find the power series representation of the function $f(x)=\frac{x^{3}}{(2-x)^{2}}$

$$
\begin{gathered}
\frac{x^{3}}{(2-x)^{2}} \times \frac{\frac{1}{4}}{\frac{1}{4}}=\frac{\left(\frac{x^{3}}{4}\right)}{(2-x)^{2}\left(\frac{1}{2}\right)^{2}}=\frac{\left(\frac{x^{3}}{4}\right)}{\left(\frac{2-x}{2}\right)^{2}}=\frac{\left(\frac{x^{3}}{4}\right)}{\left(1-\frac{1}{2} x\right)^{2}} \\
\frac{a}{(1-r)^{2}}=\sum_{k=0}^{\infty} a(k+1) r^{k} \\
a=\left(\frac{x^{3}}{4}\right), r=\frac{1}{2} x \\
f(x)=\sum_{k=0}^{\infty} \frac{x^{3}}{4}(k+1)\left(\frac{1}{2} x\right)^{k}=\sum_{k=0}^{\infty} x^{3}\left(\frac{1}{2}\right)^{2}(k+1)\left(\frac{1}{2}\right)^{k} x^{k}=\sum_{k=0}^{\infty}(k+1)\left(\frac{1}{2}\right)^{k+2} x^{k+3}
\end{gathered}
$$

The terms that go into the power series must (!!!!!) be x or ($x-c$), they cannot be general polynomials.

Example.
Sometimes this means you may have to complete the square.
Find the power series representation of the function $f(x)=\frac{1}{1+4 x+x^{2}}$
You cannot let $r=-4 x-x^{2}$

$$
\begin{gathered}
\frac{1}{1+4 x+x^{2}}=\frac{1}{1-4+\left(x^{2}+4 x+4\right)}=\frac{1}{-3+(x+2)^{2}} \times \frac{-\frac{1}{3}}{-\frac{1}{3}}=\frac{-\frac{1}{3}}{1-\frac{1}{3}(x+2)^{2}} \\
a=-\frac{1}{3}, r=\frac{1}{3}(x+2)^{2} \\
f(x)=\sum_{n=0}^{\infty}\left(-\frac{1}{3}\right)\left[\left(\frac{1}{3}\right)(x+2)^{2}\right]^{n}=\sum_{n=0}^{\infty}-\frac{(x+2)^{2 n}}{3^{n+1}}
\end{gathered}
$$

Testing for convergence of power series:
See the end of the last class notes for finding the interval and radius of convergence.

