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Separable Differential Equations (4.3) 
Logistic Equations/Population Models (4.4) 
 
Separable differential equations are equations that we can algebraically put all the y-variables on one 
side of the equation, and all the independent variables (x or t) on the other side of the equation. (in 
some ways, we can think of this as undoing a chain rule or undoing implicit differentiation). 
 
In some cases, these problems are autonomous (no independent variable explicitly in the equation). 
In some cases, these problems are nonlinear. 
 

𝑑𝑃

𝑑𝑡
= 𝑘𝑃 

 
The population is increasing at a rate proportional to the existing population (k is positive). 
 
P is the function variable, so we want to do algebra to get dP and P on the same side of the equation, 
and get t and any other components to the other side of the equation. 
 
Multiply both sides of the equation by dt, and divide both sides by P 
 

𝑑𝑃

𝑃
= 𝑘𝑑𝑡 

 
1

𝑃
𝑑𝑃 = 𝑘𝑑𝑡 

 
Integrate both sides with respect to the variable on each side. 
 

∫
1

𝑃
𝑑𝑃 = ∫ 𝑘 𝑑𝑡 

 
ln|𝑃| = 𝑘𝑡 + 𝐶 

 

𝑒ln|𝑃| = 𝑒𝑘𝑡+𝐶 
𝑃 = 𝑒𝑘𝑡𝑒𝐶 

𝑒𝐶 = 𝑃0 
 

𝑃(𝑡) = 𝑃0𝑒𝑘𝑡 
 
Standard exponential growth function. 
 
Example. 

𝑑𝑦

𝑑𝑥
= 3𝑥2𝑦 + 2𝑥2 − 12𝑦 − 8 

 
𝑑𝑦

𝑑𝑥
= 𝑥2(3𝑦 + 2) − 4(3𝑦 + 2) 



 
𝑑𝑦

𝑑𝑥
= (𝑥2 − 4)(3𝑦 + 2) 

 
𝑑𝑦

3𝑦 + 2
= (𝑥2 − 4)𝑑𝑥 

 

∫
𝑑𝑦

3𝑦 + 2
= ∫ 𝑥2 − 4 𝑑𝑥 

 

𝑢 = 3𝑦 + 2, 𝑑𝑢 = 3𝑑𝑦 →
1

3
𝑑𝑢 = 𝑑𝑦 

 

∫
1

3
× (

1

𝑢
) 𝑑𝑢 = ∫ 𝑥2 − 4 𝑑𝑥 

 
1

3
ln|𝑢| =

1

3
𝑥3 − 4𝑥 + 𝐶 

 
1

3
ln|3𝑦 + 2| =

1

3
𝑥3 − 4𝑥 + 𝐶 

 
Not every problem must be solved for the function variable. It is okay in some cases to leave it in implicit 
form. 
 

ln|3𝑦 + 2| = 𝑥3 − 12𝑥 + 𝐶 

3𝑦 + 2 = 𝑒𝑥3−12𝑥+𝐶 

3𝑦 + 2 = 𝑌0𝑒𝑥3−12𝑥 

3𝑦 = 𝑌0𝑒𝑥3−12𝑥 − 2 

𝑦(𝑥) = 𝐴0𝑒𝑥3−12𝑥 −
2

3
 

 
Example. 

𝑑𝑦

𝑑𝑥
= (2𝑥 + 3)(𝑦2 − 4), 𝑦(0) = −3 

 
(when an initial value like y(0) is present, this is called an initial value problem, and we use the extra 
information to find the value of the constant). 
 

𝑑𝑦

𝑑𝑥
= (2𝑥 + 3)(𝑦2 − 4) 

 
𝑑𝑦

𝑦2 − 4
= 2𝑥 + 3 𝑑𝑥 

 

∫
𝑑𝑦

𝑦2 − 4
= ∫ 2𝑥 + 3 𝑑𝑥 

 



∫
𝑑𝑦

(𝑦 − 2)(𝑦 + 2)
= 𝑥2 + 3𝑥 + 𝐶 

 

𝐴

𝑦 − 2
+

𝐵

𝑦 + 2
=

(𝐴(𝑦 + 2) + 𝐵(𝑦 − 2))

(𝑦 − 2)(𝑦 + 2)
 

 
𝐴𝑦 + 2𝐴 + 𝐵𝑦 − 2𝐵 = 1 

 
𝐴 + 𝐵 = 0 

2𝐴 − 2𝐵 = 1 

𝐴 − 𝐵 =
1

2
 

𝐴 + 𝐵 = 0 

2𝐴 =
1

2
→ 𝐴 =

1

4
 

 

𝐵 = −
1

4
 

 

∫
𝑑𝑦

(𝑦 − 2)(𝑦 + 2)
= ∫

1
4

𝑦 − 2
+

(−
1
4)

𝑦 + 2
𝑑𝑦 =

1

4
ln|𝑦 − 2| −

1

4
ln|𝑦 + 2| = 𝑥2 + 3𝑥 + 𝐶 

 
ln|𝑦 − 2| − ln|𝑦 + 2| = 4𝑥2 + 12𝑥 + 𝐶 

ln |
𝑦 − 2

𝑦 + 2
| = 4𝑥2 + 12𝑥 + 𝐶 

 
𝑦 − 2

𝑦 + 2
= 𝐴𝑒4𝑥2 +12𝑥 

 

𝑦 − 2 = 𝐴𝑦𝑒4𝑥2+12𝑥 + 2𝐴𝑒4𝑥2+12𝑥 
 

𝑦 − 𝐴𝑦𝑒4𝑥2+12𝑥 = 2 + 2𝐴𝑒4𝑥2+12𝑥 
 

𝑦(1 − 𝐴𝑒4𝑥2+12𝑥) = 2 + 2𝐴𝑒4𝑥2+12𝑥 

 

𝑦(𝑥) =
2 + 2𝐴𝑒4𝑥2+12𝑥

1 − 𝐴𝑒4𝑥2+12𝑥
 

 
𝑦(0) = −3 

 
𝑦 − 2

𝑦 + 2
= 𝐴𝑒4𝑥2+12𝑥 

 

−
5

−1
=

−3 − 2

−3 + 2
= 𝐴𝑒0+0 = 𝐴 

 
𝐴 = 5 



 
𝑦 − 2

𝑦 + 2
= 5𝑒4𝑥2+12𝑥 

 

𝑦(𝑥) =
2 + 10𝑒4𝑥2+12𝑥

1 − 5𝑒4𝑥2+12𝑥
 

 
 
Example. 
A tank that contains a 100L of brine solution that initially has 4kg of salt in it.  Pumping fluid into the tank  
(t=0), at a rate of 2L/min, containing 0.5kg/L of salt. The water is flowing out of the tank (after being 
mixed well) at a rate of 2L/min.  Find an equation that tells us how much sale is in the tank at any time t. 
 
The rate of change of salt = rate in minus the rate out 
 

𝑑𝑆

𝑑𝑡
=

2𝐿

𝑚𝑖𝑛
× 0.5

𝑘𝑔

𝐿
−

2𝐿

𝑚𝑖𝑛
×

𝑆

100𝐿
 

 
𝑑𝑆

𝑑𝑡
= 1 −

𝑆

50
, 𝐴(0) = 4 

 
𝑑𝑆

𝑑𝑡
=

1

50
(50 − 𝑆) = −

1

50
(𝑆 − 50) 

 
𝑑𝑆

𝑆 − 50
= −

1

50
𝑑𝑡 

 

∫
𝑑𝑆

𝑆 − 50
= ∫ −

1

50
𝑑𝑡 

 

ln|𝑆 − 50| = −
1

50
𝑡 + 𝐶 

𝑆 − 50 = 𝐴𝑒−
1

50
𝑡 

 

𝑆(𝑡) = 50 + 𝐴𝑒−
1

50
𝑡 

 
𝑆(0) = 4 = 50 + 𝐴𝑒0 → 𝐴 = −46 

 

𝑆(𝑡) = 50 − 46𝑒−
1

50
𝑡 

 
What is the amount of salt in the tank at 𝑡 = 10 𝑚𝑖𝑛𝑢𝑡𝑒𝑠? 
 

𝑆(10) = 50 − 46 = 12.338 … 𝑘𝑔 
 
What is the equilibrium amount of salt in the tank? What is the maximum level of salt that can be 
achieved through this process? (Where is this going over time?) 
 



The limiting level of salt in the tank is 50kg. 
 
Logistic equations are similar to a previous example. They are autonomous, and typically have 
(factorable) polynomials in their differential equations. 
 

𝑑𝑦

𝑑𝑡
= 𝑘𝑦(𝑦 − 10) 

 
If we solve these, we use partial fractions, and if there are more than two factors, they are almost 
impossible to solve explicitly for y. 
 
Direction fields for autonomous equations are much easier to plot because they only differ by y and not 
by x (or t). They change vertically, but not horizontally.  
 

𝑑𝑦

𝑑𝑡
= −𝑦(𝑦 − 3) 

 
Population models don’t generally graph values below zero, because negative population doesn’t usually 
mean anything. 
 
What are important points? Equilibria are where the differential equation is equal to zero. 
 

0 = −𝑦(𝑦 − 3) 
𝑦 = 0, 𝑦 = 3 

 

 
 
Equilibria can have different behaviors (for population models we usually only characterize equilibria 
that are y>0) 

1) The equilibrium is an attractor (slopes point toward the equilibrium), carrying capacity, stable 
2) The equilibrium is a repeller (slopes point away from the equilibrium), threshold, unstable 
3) The equilibrium could be semi-stable when slopes on one side point away from the equilibrium 

and point toward it on the other. 
 
https://www.geogebra.org/m/Pd4Hn4BR 
 

https://www.geogebra.org/m/Pd4Hn4BR


 

 



 

 
 
 
 
 
 
 


