
IT-234 – database

concepts
UNIT 8 – USING SQL COMMANDS TO QUERY DATA IN MORE

THAN ONE TABLE

overview

You have explored gathering
data from one table.

In this unit, you will be
combining data from two or
more tables to produce a
result set.

This technique is how you
can get a lot of useful data
from the database, but it
requires knowledge of how
the tables are laid out.

overview

We can join tables (or
views) whenever we
need data from more
than one table in our
query results.

In SQL, you specify joins
by listing the tables or
views to be joined after
the FROM clause of the
SELECT statement.

overview

The SQL JOIN clause is
used with the FROM

table specifications to
combine records from
two or more tables in

a database.

A JOIN is a means for
combining fields from

two tables by using
values common to

each.

overview

Subqueries are another means
for extracting data from

multiple tables in a SQL query.

A subquery refers to a query
(SELECT statement) that is
contained in, and thus is

subordinate to, another query.

Subqueries offer a very flexible
way of selecting data.

overview

Unions combine the
results from multiple
SELECT queries into

a consolidated
result set.

A union can be
used if certain

conditions are met.

Each SELECT
statement within

UNION must have
the same number of

columns.

The columns must
have similar data

types.

The columns in
each SELECT

statement must also
be in the same

order.

overview

After completing this unit, you should
be able to:

➢ Use advanced SQL

statements to manage and
interact with data from
more than one table.

SQL Joins

In a relational database, data is
distributed in multiple logical tables.

To get a complete meaningful set of
data, you need to query data from
these tables via joins.

SQL Server supports many kinds of joins
including inner join, left join, right join,
full outer join, and cross join.

Each join type specifies how SQL
Server uses data from one table to
select rows in another table.

SQL Joins

Example tables from Northwind database:

F

K

F

K

SQL INNER JOIN

 The INNER JOIN keyword

selects records that have

matching values in both

tables.

 Syntax:

SQL INNER

JOIN

 We can create the following SQL

statement (that contains an INNER

JOIN), that selects records that have

matching values in both tables:

SQL INNER JOIN – Three tables

The following SQL statement selects all

orders with customer and shipper

information:

SQL LEFT OUTER

JOIN

 The LEFT JOIN keyword

returns all records from the

left table (table1), and the

matching records from the

right table (table2).

 The result is 0 records from

the right side, if there is no

match.

SQL LEFT

OUTER

JOIN

The following SQL statement will select all

customers, and any orders they might

have:

Note: The LEFT JOIN keyword returns all records from the left table
(Customers), even if there are no matches in the right table (Orders).

SQL right OUTER

JOIN

 The RIGHT JOIN keyword

returns all records from the

right table (table2), and the

matching records from the

left table (table1).

 The result is 0 records from

the left side, if there is no

match.

SQL right OUTER JOIN

The following SQL statement will select all

customers, and any orders they might

have:

Note: The RIGHT JOIN keyword returns all records from the right table

(Customers), even if there are no matches in the left table (Orders).

SQL full OUTER

JOIN

 The FULL OUTER JOIN

keyword returns all records

when there is a match in left

(table1) or right (table2)

table records.

SQL full OUTER JOIN

The following SQL statement selects all

customers and all orders:

Note: The FULL OUTER JOIN keyword returns all matching records from both tables whether the other

table matches or not. So, if there are rows in "Customers" that do not have matches in "Orders", or if
there are rows in "Orders" that do not have matches in "Customers", those rows will be listed as well.

SQL Self

Join

A self join is a regular join, but the table

is joined with itself.

Syntax:

T1 and T2 are different table aliases for

the same table.

SQL Self Join

The following SQL statement matches

customers that are from the same city:

SQL UNION

Operator

 The UNION operator is used to
combine the result set of two or
more SELECT statements.

➢ Every SELECT statement
within UNION must have the
same number of columns

➢ The columns must also
have similar data types

➢ The columns in every
SELECT statement must also
be in the same order

SQL

UNION

Operator

 UNION Syntax:

 The UNION operator selects only

distinct values by default.

 To allow duplicate values, use UNION

ALL:

SQL UNION Operator

The following SQL statement returns the

cities (only distinct values) from both

the "Customers" and the "Suppliers"
table:

SQL

UNION

Operator

The following SQL statement returns
the German cities (only distinct

values) from both the "Customers"
and the "Suppliers" table:

SQL

UNION

Operator

The following SQL statement lists all
customers and suppliers:

SQL UNION Operator

The following SQL statement returns the

cities (duplicate values also) from

both the "Customers" and the
"Suppliers" table:

SQL

subquery

 A subquery is a query nested

inside another statement

such as SELECT, INSERT,

UPDATE, or DELETE.

➢ In place of an expression

➢ With IN or NOT IN

➢ With ANY or ALL

➢ With EXISTS or NOT EXISTS

➢ In UPDATE, DELETE, or INSERT

statement

➢ In the FROM clause

SQL subquery

Example tables:

F

K

SQL

subquery

The following statement
shows how to use a

subquery in the
WHERE clause of a

SELECT statement to

find the sales orders
of the customers who

locate in New York:

SQL subquery

 Here is the result:

 In the example, the following

statement is a subquery:

 Note that you must always enclose

the SELECT query of a subquery in

parentheses ().

SQL
subquery

 A subquery is

also known as

an inner query

or inner select

while the

statement

containing the

subquery is

called an outer

select or outer

query:

SQL subquery

In the example query, the subquery
executes first to get a list of customer
identification numbers of the customers
who locate in New York.

SQL

subquery

 SQL Server then substitutes customer

identification numbers returned by the

subquery in the IN operator and

executes the outer query to get the

final result set.

SQL subquery

Moreover, the query itself automatically adjusts whenever the
customer data changes.

The subquery removes the need for selecting the customer
identification numbers and plugging them into the outer query.

As you can see, by using the subquery, you can combine two
steps together.

SQL Nested subquery

A subquery can be

nested within another
subquery.

SQL Server supports up

to 32 levels of nesting.

SQL nested subquery

First, SQL Server executes the following

subquery to get a list of brand

identification numbers of the Strider

and Trek brands:

SQL nested subquery

 Second, SQL Server calculates the average price
list of all products that belong to those brands.

 Third, SQL Server finds the products whose list price
is greater than the average list price of all products
with the Strider or Trek brand.

SQL

subquery

– virtual

table

Suppose that you want to find the
average of the sum of orders of all

sales staff.

To do this, you can first find the

number of orders by staffs:

SQL subquery – virtual table

Then, you can apply the AVG() function to this

result set.

Since a query returns a result set that looks like

a virtual table, you can place the whole

query in the FROM clause of another query

like this:

SQL

subquery

– virtual

table

To come up with the final result, SQL Server
carries the following steps:

Execute the subquery in
the FROM clause.

Use the result of the
subquery and execute the

outer query.

In the example, t served as the table alias for
the subquery.

The query that you place in the FROM clause
must have a table alias.

SQL

correlated

subquery

A correlated subquery is a
subquery that uses the values
of the outer query.

In other words, it depends on
the outer query for its values.

Because of this dependency,
a correlated subquery
cannot be executed
independently as a simple
subquery.

SQL correlated
subquery

 Moreover, a
correlated
subquery is
executed
repeatedly, once
for each row
evaluated by the
outer query.

 The correlated
subquery is also
known as a
repeating
subquery.

 Consider the
following products
table:

SQL

correlated

subquery

The following example finds the products
whose list price is equal to the highest
list price of the products within the
same category:

SQL

correlated

subquery

In the example, for
each product

evaluated by the
outer query, the

subquery finds the
highest price of all

products in its
category.

If the price of the
current product is

equal to the highest
price of all products
in its category, the
product is included

in the result set.

This process
continues for the

next product and so
on.

As you can see, the
correlated subquery
is executed once for

each product
evaluated by the

outer query.

UNIT 8
ASSIGNME
NT

UNIT 8

ASSIGNMENT

Purpose:

 You created a relational
database so that you could
maximize the ability to retrieve
data in a variety of ways.

 By relating the tables through the
use of foreign keys, you ensured
that you could pull meaningful
data from more than one table.

UNIT 8

ASSIGNMENT

Purpose:

This enhances an
organization’s data
analytics ability.

In this unit, you will use
joins, subqueries, and
union statements to
retrieve data from
more than one table.

UNIT 8

ASSIGNMENT

Assignment
Instructions:

•Generate SQL statements
to address the problems
below using the SQL
Server Management
Studio query window.

•You will be creating
advanced SQL
statements to extract
data from more than one
table.

UNIT 8

ASSIGNMENT

Assignment Instructions:

• You will use the Northwind database
for this assignment.

• Leverage the database design
diagram provided in the assignment
posting as a guide in forming your SQL
statements.

UNIT 8 ASSIGNMENT

Assignment Instructions:

 Your assignment submittal needs to show both

the generated SQL statements and confirmatory

screenshots verifying task completion.

UNIT 8
ASSIGNMENT

Assignment
Instructions:

 Problem 1:
Create a report
of “seafood”
and “produce”
products,
showing
ProductID,
ProductName,
and
CategoryName.
Incorporate an
inner join
condition for this
query.

UNIT 8

ASSIGNMENT

Assignment Instructions:

 Problem 2: List the last name, first

name, title, and salary of company

employees with salaries above the

company average. Use a non-

correlated subquery in the SQL

statement.

UNIT 8

ASSIGNMENT

Assignment Instructions:

• Problem 3: List the average salaries for
employees in Seattle and London. The

averages need to be calculated on a per city
basis. Use a union operation to generate the

results. (Hint: Use one SQL statement to
calculate the average salary for one city and
another almost identical SQL statement to

calculate the average salary for the other
city.)

UNIT 8
ASSIGNMENT

Assignment
Instructions:

 Problem 4: Show
the product
names for
products that
have been
ordered in
quantities equal
to or exceeding
120. Use a non-
correlated
subquery in the
SQL statement.

UNIT 8 ASSIGNMENT

Assignment Instructions:

• Problem 5: List the supplier names
and cities for suppliers that reside in

the same cities as Northwind
employees. Use a non-correlated

subquery in the SQL statement.

UNIT 8

ASSIGNMENT

Assignment Instructions:

• Problem 6: Display the names of

Northwind employees that manage

territories located in the Western region.

Use inner joins in the SQL statement

linking the Employees,

EmployeeTerritories, Territories, and

Region tables. Do not show duplicate

employee names in the result set.

UNIT 8

ASSIGNMENT

Assignment Instructions:

 Problem 7: Display

customer names, cities,

and order IDs for customers

residing in Madrid or Paris.

Show all customers

regardless of whether they

have placed orders or not.

Use an outer join in the SQL

statement.

UNIT 8

ASSIGNMENT

Assignment Instructions:

 Problem 8: Display a

combined list of supplier

and shipper names along

with their phone numbers.

Use a union operation in

the SQL statement. Present

the results in alphabetical

order based on

CompanyName.

UNIT 8

ASSIGNMENT

Assignment Instructions:

 Problem 9: Show the employee names,

salaries, and countries for employees

that have salaries above the average

salary within their respective countries.

Use a correlated subquery in the SQL

statement.

UNIT 8

ASSIGNMENT

Assignment Instructions:

 Problem 10: Display the

names of products supplied

by vendors in the USA and

Norway. Show the product

country in the result set.

Present the results in

alphabetical order by

product name. Use an

inner join in the SQL

statement.

UNIT 8

ASSIGNMENT

Assignment
Requirements:

• Microsoft SQL Server
Express and SQL Server
Management Studio
(SSMS) MUST be
installed to complete
this Assignment.

• Compose your
Assignment in a Word
document.

UNIT 8

ASSIGNMENT

Assignment
Requirements:

Embed the
screenshots of your

SQL statements
and confirmatory

output (e.g., query
results) into the

Word document.

The assignment is
due by the final
day of the Unit 8

week.

UNIT 8

ASSIGNMENT

Directions for Submitting
Your Assignment:

• Name your assignment
document according to this
convention:
IT234_<YourName>_Unit8.docx
(replace <YourName> with your
full name).

• Submit your completed
assignment to the Unit 8
Assignment Dropbox by the final
day of the Unit 8 week.

• Review the Unit 8 Assignment
Rubric before beginning this
activity.

Any

Questions?

	Slide 1: IT-234 – database concepts
	Slide 2: overview
	Slide 3: overview
	Slide 4: overview
	Slide 5: overview
	Slide 6: overview
	Slide 7: overview
	Slide 8: SQL Joins
	Slide 9: SQL Joins
	Slide 10: SQL INNER JOIN
	Slide 11: SQL INNER JOIN
	Slide 12: SQL INNER JOIN – Three tables
	Slide 13: SQL LEFT OUTER JOIN
	Slide 14: SQL LEFT OUTER JOIN
	Slide 15: SQL right OUTER JOIN
	Slide 16: SQL right OUTER JOIN
	Slide 17: SQL full OUTER JOIN
	Slide 18: SQL full OUTER JOIN
	Slide 19: SQL Self Join
	Slide 20: SQL Self Join
	Slide 21: SQL UNION Operator
	Slide 22: SQL UNION Operator
	Slide 23: SQL UNION Operator
	Slide 24: SQL UNION Operator
	Slide 25: SQL UNION Operator
	Slide 26: SQL UNION Operator
	Slide 27: SQL subquery
	Slide 28: SQL subquery
	Slide 29: SQL subquery
	Slide 30: SQL subquery
	Slide 31: SQL subquery
	Slide 32: SQL subquery
	Slide 33: SQL subquery
	Slide 34: SQL subquery
	Slide 35: SQL Nested subquery
	Slide 36: SQL nested subquery
	Slide 37: SQL nested subquery
	Slide 38: SQL subquery – virtual table
	Slide 39: SQL subquery – virtual table
	Slide 40: SQL subquery – virtual table
	Slide 41: SQL correlated subquery
	Slide 42: SQL correlated subquery
	Slide 43: SQL correlated subquery
	Slide 44: SQL correlated subquery
	Slide 45
	Slide 46: UNIT 8 ASSIGNMENT
	Slide 47: UNIT 8 ASSIGNMENT
	Slide 48: UNIT 8 ASSIGNMENT
	Slide 49: UNIT 8 ASSIGNMENT
	Slide 50: UNIT 8 ASSIGNMENT
	Slide 51: UNIT 8 ASSIGNMENT
	Slide 52: UNIT 8 ASSIGNMENT
	Slide 53: UNIT 8 ASSIGNMENT
	Slide 54: UNIT 8 ASSIGNMENT
	Slide 55: UNIT 8 ASSIGNMENT
	Slide 56: UNIT 8 ASSIGNMENT
	Slide 57: UNIT 8 ASSIGNMENT
	Slide 58: UNIT 8 ASSIGNMENT
	Slide 59: UNIT 8 ASSIGNMENT
	Slide 60: UNIT 8 ASSIGNMENT
	Slide 61: UNIT 8 ASSIGNMENT
	Slide 62: UNIT 8 ASSIGNMENT
	Slide 63: UNIT 8 ASSIGNMENT
	Slide 64

