
DSA 610 Redesign, Lecture 10 Outline

Lecture Outline: Parallel Processing, Hadoop, Spark, and Online Analytical Processing (OLAP)
Duration: 50 minutes

1. Introduction to Parallel Processing (5 minutes)

• Objective: Understand the concept and importance of parallel processing in data analysis.
• Content:

o Definition: Parallel processing involves performing multiple computations
simultaneously to speed up data processing tasks.

o Benefits:
▪ Increased Speed: Reduced processing time for large datasets.
▪ Efficiency: Better utilization of computing resources.

2. Hadoop (12 minutes)

• Objective: Explore Hadoop and its role in distributed data processing.
• Content:

o 1. Overview:
▪ Definition: An open-source framework for processing large datasets across

clusters of computers using simple programming models.
▪ Components:

▪ Hadoop Distributed File System (HDFS): Stores data across multiple
machines.

▪ MapReduce: A programming model for processing large datasets in
parallel.

o 2. How It Works:
▪ Data Storage: Data is divided into blocks and distributed across a cluster.
▪ Data Processing: MapReduce jobs process data in parallel, with a "map" phase

to distribute work and a "reduce" phase to aggregate results.
o 3. Example Use Case:

▪ Log Analysis: Processing and analyzing large web server logs.
o 4. Advantages and Disadvantages:

▪ Advantages:
▪ Scalability: Handles large volumes of data.
▪ Fault Tolerance: Redundant data storage ensures reliability.

▪ Disadvantages:
▪ Complexity: Requires significant setup and configuration.
▪ Performance: Can be slower for some types of queries compared to

other systems.

3. Apache Spark (12 minutes)

• Objective: Understand Spark and its advantages over Hadoop for data processing.
• Content:

o 1. Overview:
▪ Definition: An open-source, distributed computing system designed for fast data

processing and analytics.
▪ Components:

▪ Spark Core: The underlying engine for large-scale data processing.

▪ Spark SQL: For querying data using SQL.
▪ Spark Streaming: For processing real-time data streams.
▪ MLlib: Machine learning library.
▪ GraphX: For graph processing.

o 2. How It Works:
▪ In-Memory Processing: Spark stores intermediate data in memory, speeding up

processing.
▪ Resilient Distributed Datasets (RDDs): Fault-tolerant data structures for

distributed computing.
o 3. Example Use Case:

▪ Real-Time Analytics: Processing and analyzing streaming data from social media
or IoT devices.

o 4. Advantages and Disadvantages:
▪ Advantages:

▪ Speed: Faster processing due to in-memory operations.
▪ Flexibility: Supports various data processing tasks.

▪ Disadvantages:
▪ Memory Usage: High memory requirements for in-memory processing.
▪ Complexity: Requires knowledge of Spark's APIs and architecture.

4. Online Analytical Processing (OLAP) (10 minutes)

• Objective: Learn about OLAP and its role in data analysis and reporting.
• Content:

o 1. Overview:
▪ Definition: OLAP systems allow users to interactively analyze multidimensional

data from multiple perspectives.
▪ Types:

▪ MOLAP (Multidimensional OLAP): Uses multidimensional data cubes.
▪ ROLAP (Relational OLAP): Uses relational databases to provide OLAP

capabilities.
o 2. Key Features:

▪ Multidimensional Analysis: Enables slicing, dicing, and drilling down into data.
▪ Aggregations: Pre-computed summaries for fast querying.

o 3. Example Use Case:
▪ Sales Analysis: Analyzing sales data across different dimensions such as time,

geography, and product categories.
o 4. Advantages and Disadvantages:

▪ Advantages:
▪ Ease of Use: User-friendly interfaces for complex queries.
▪ Performance: Fast query response times for analytical queries.

▪ Disadvantages:
▪ Cost: High setup and maintenance costs.
▪ Scalability: Can be limited by the size of pre-computed data cubes.

5. Comparative Overview (5 minutes)

• Objective: Compare and contrast Hadoop, Spark, and OLAP systems in terms of use cases and
performance.

• Content:

o Hadoop vs. Spark:
▪ Hadoop: Best for batch processing and large-scale data storage.
▪ Spark: Ideal for fast, iterative processing and real-time analytics.

o OLAP vs. Hadoop/Spark:
▪ OLAP: Focuses on interactive data analysis and reporting.
▪ Hadoop/Spark: Focus on large-scale data processing and analytics.

6. Q&A and Discussion (6 minutes)

• Objective: Address questions and discuss practical applications of parallel processing, Hadoop,
Spark, and OLAP.

• Content:
o Q&A Session: Open the floor for student questions.
o Discussion: Explore scenarios where each technology might be used and the trade-offs

involved.

Key Takeaways

• Parallel Processing: Essential for speeding up data processing tasks.
• Hadoop: A framework for distributed data processing using HDFS and MapReduce.
• Spark: A fast, in-memory processing engine with a wide range of capabilities.
• OLAP: Provides multidimensional analysis and interactive reporting.

Resources:
Parallel Processing: https://www.spiceworks.com/tech/iot/articles/what-is-parallel-processing/
Hadoop & HDFS: https://www.geeksforgeeks.org/how-does-hadoop-handle-parallel-processing-of-large-
datasets-across-a-distributed-cluster/
MapReduce: https://courses.cs.washington.edu/courses/cse490h/07wi/readings/IntroductionToParallelP
rogrammingAndMapReduce.pdf
Apache Spark: https://www.databricks.com/glossary/what-is-apache-spark
Pyspark: https://www.datacamp.com/tutorial/pyspark-tutorial-getting-started-with-pyspark
Online Analytic Processing (OLAP): https://aws.amazon.com/what-is/olap/
OLAP, ROLAP, MOLAP, HOLAP: https://www.sisense.com/glossary/olap/

1. Introduction to Machine Learning Models (5 minutes)

• Objective: Understand the broad categories of machine learning models and their purposes.
• Content:

o Definition:
▪ Machine Learning Models: Algorithms and techniques used to analyze and

interpret data, make predictions, and automate decision-making.
o Categories:

▪ Supervised Learning
▪ Unsupervised Learning
▪ Semi-Supervised Learning
▪ Reinforcement Learning
▪ Natural Language Processing (NLP)
▪ Neural Networks
▪ Graph-Based Approaches
▪ Image Processing
▪ Spatial Analysis

https://www.spiceworks.com/tech/iot/articles/what-is-parallel-processing/
https://www.geeksforgeeks.org/how-does-hadoop-handle-parallel-processing-of-large-datasets-across-a-distributed-cluster/
https://www.geeksforgeeks.org/how-does-hadoop-handle-parallel-processing-of-large-datasets-across-a-distributed-cluster/
https://courses.cs.washington.edu/courses/cse490h/07wi/readings/IntroductionToParallelProgrammingAndMapReduce.pdf
https://courses.cs.washington.edu/courses/cse490h/07wi/readings/IntroductionToParallelProgrammingAndMapReduce.pdf
https://www.databricks.com/glossary/what-is-apache-spark
https://www.datacamp.com/tutorial/pyspark-tutorial-getting-started-with-pyspark
https://aws.amazon.com/what-is/olap/
https://www.sisense.com/glossary/olap/

2. Supervised Learning (10 minutes)

• Objective: Understand the purpose and methods of supervised learning.
• Content:

o Definition:
▪ Supervised Learning: Models trained on labeled data where the outcome is

known.
o Purpose:

▪ Prediction: Forecasting future values (regression) or classifying data into
categories (classification).

o Common Algorithms:
▪ Linear Regression
▪ Logistic Regression
▪ Support Vector Machines (SVMs)
▪ Decision Trees and Random Forests

o Pre-Processing:
▪ Label Encoding
▪ Feature Scaling
▪ Handling Missing Values

3. Unsupervised Learning (10 minutes)

• Objective: Explore the goals and methods of unsupervised learning.
• Content:

o Definition:
▪ Unsupervised Learning: Models trained on unlabeled data to identify hidden

patterns or groupings.
o Purpose:

▪ Clustering: Grouping similar data points (e.g., K-Means, Hierarchical Clustering).
▪ Dimensionality Reduction: Reducing the number of features while retaining

important information (e.g., PCA).
o Common Algorithms:

▪ K-Means Clustering
▪ Principal Component Analysis (PCA)
▪ Hierarchical Clustering

o Pre-Processing:
▪ Feature Scaling
▪ Normalization
▪ Handling Missing Values

4. Semi-Supervised Learning (5 minutes)

• Objective: Understand how semi-supervised learning combines labeled and unlabeled data.
• Content:

o Definition:
▪ Semi-Supervised Learning: Uses a small amount of labeled data and a large

amount of unlabeled data.
o Purpose:

▪ Improving Model Accuracy: Enhancing performance when labeled data is
scarce.

o Common Techniques:
▪ Self-Training
▪ Co-Training

o Pre-Processing:
▪ Similar to supervised learning, with an emphasis on handling large amounts of

unlabeled data.

5. Reinforcement Learning (5 minutes)

• Objective: Explore the concepts and methods of reinforcement learning.
• Content:

o Definition:
▪ Reinforcement Learning: Models learn to make decisions by receiving rewards

or penalties.
o Purpose:

▪ Decision Making: Optimizing actions in sequential environments (e.g., game
playing, robotics).

o Common Algorithms:
▪ Q-Learning
▪ Deep Q-Networks (DQN)
▪ Policy Gradient Methods

o Pre-Processing:
▪ Reward Shaping
▪ Feature Engineering for Environment States

6. Natural Language Processing (NLP) (5 minutes)

• Objective: Understand the goals and methods of NLP.
• Content:

o Definition:
▪ NLP: Techniques for processing and analyzing human language data.

o Purpose:
▪ Text Classification: Categorizing text data (e.g., sentiment analysis, spam

detection).
▪ Named Entity Recognition (NER): Identifying entities in text.

o Common Techniques:
▪ Bag of Words (BoW)
▪ TF-IDF
▪ Word Embeddings (Word2Vec, GloVe)

o Pre-Processing:
▪ Tokenization
▪ Stop-word Removal
▪ Text Normalization (stemming, lemmatization)

7. Neural Networks (5 minutes)

• Objective: Provide a broad overview of neural networks and their applications.
• Content:

o Definition:
▪ Neural Networks: Models inspired by the human brain, composed of

interconnected layers of nodes (neurons).

o Purpose:
▪ Pattern Recognition: Learning complex patterns in data.

o Types:
▪ Feedforward Neural Networks
▪ Convolutional Neural Networks (CNNs)
▪ Recurrent Neural Networks (RNNs)

o Pre-Processing:
▪ Feature Scaling
▪ Normalization

8. Graph-Based Approaches (5 minutes)

• Objective: Understand the use of graph-based methods in machine learning.
• Content:

o Definition:
▪ Graph-Based Approaches: Models that use graph structures to represent data.

o Purpose:
▪ Network Analysis: Understanding relationships and interactions (e.g., social

networks, web graphs).
o Common Techniques:

▪ Graph Neural Networks (GNNs)
▪ PageRank Algorithm

o Pre-Processing:
▪ Graph Construction
▪ Feature Extraction from Graphs

9. Image Processing (5 minutes)

• Objective: Explore image processing techniques and their applications.
• Content:

o Definition:
▪ Image Processing: Techniques for analyzing and interpreting visual data.

o Purpose:
▪ Object Detection and Classification: Identifying and labeling objects in images.

o Common Techniques:
▪ Convolutional Neural Networks (CNNs)
▪ Image Segmentation

o Pre-Processing:
▪ Image Normalization
▪ Data Augmentation

10. Spatial Analysis (5 minutes)

• Objective: Understand the applications and methods for spatial data analysis.
• Content:

o Definition:
▪ Spatial Analysis: Analyzing data with a spatial component (e.g., geographic

data).
o Purpose:

▪ Geospatial Analysis: Understanding spatial patterns and relationships (e.g.,
heatmaps, spatial clustering).

o Common Techniques:
▪ Geographic Information Systems (GIS)
▪ Spatial Autocorrelation

o Pre-Processing:
▪ Geocoding
▪ Spatial Data Cleaning

11. Q&A and Discussion (5 minutes)

• Objective: Address questions and discuss practical applications of different model types.
• Content:

o Q&A Session: Open the floor for student questions.
o Discussion: Explore real-world applications and challenges associated with various

models.

Key Takeaways

• Model Categories: Understanding the different types of machine learning models and their
purposes.

• Pre-Processing: Overview of the necessary data preparation for various model types.
• Applications: Insight into how different models operate on different types of data and their

practical uses.

Here’s a guide to various machine learning models and the contexts in which they are most appropriate:
1. Supervised Learning
a. Linear Regression

• Context: Predicting a continuous value based on one or more features.
• Examples:

o Real Estate: Predicting house prices based on features like square footage, number of
bedrooms, etc.

o Finance: Forecasting future stock prices based on historical data.
b. Logistic Regression

• Context: Binary classification problems where the output is a probability that can be mapped to
two classes.

• Examples:
o Healthcare: Predicting whether a patient has a disease (e.g., diabetes) based on medical

test results.
o Marketing: Classifying emails as spam or not spam.

c. Decision Trees
• Context: Classification or regression tasks with interpretable results.
• Examples:

o Customer Segmentation: Classifying customers into different segments based on
purchasing behavior.

o Credit Scoring: Evaluating creditworthiness based on applicant features.
d. Random Forest

• Context: Classification or regression tasks with high accuracy and robustness to overfitting.
• Examples:

o Fraud Detection: Identifying fraudulent transactions by combining results from multiple
decision trees.

o Medical Diagnosis: Predicting disease presence with complex datasets.

e. Support Vector Machines (SVM)
• Context: Classification tasks with a clear margin of separation between classes.
• Examples:

o Image Classification: Recognizing handwritten digits (e.g., MNIST dataset).
o Text Classification: Classifying news articles into topics.

f. K-Nearest Neighbors (KNN)
• Context: Classification or regression where relationships between instances are based on

similarity.
• Examples:

o Recommendation Systems: Recommending products based on the similarity to other
users' preferences.

o Pattern Recognition: Identifying patterns in image data.
g. Neural Networks

• Context: Complex tasks requiring learning from large amounts of data with non-linear
relationships.

• Examples:
o Image Recognition: Identifying objects within images (e.g., facial recognition).
o Natural Language Processing: Machine translation, sentiment analysis.

2. Unsupervised Learning
a. Clustering (e.g., K-Means)

• Context: Grouping similar data points together without prior labels.
• Examples:

o Market Segmentation: Grouping customers based on purchasing behavior.
o Anomaly Detection: Identifying unusual patterns in network traffic.

b. Principal Component Analysis (PCA)
• Context: Dimensionality reduction for visualizing and interpreting high-dimensional data.
• Examples:

o Data Visualization: Reducing dimensions of gene expression data for visualization.
o Feature Extraction: Simplifying data for further analysis.

c. Association Rule Learning (e.g., Apriori)
• Context: Finding relationships between variables in large datasets.
• Examples:

o Market Basket Analysis: Discovering associations between items purchased together.
o Recommender Systems: Identifying products frequently bought together.

3. Reinforcement Learning
a. Q-Learning

• Context: Learning optimal actions in a given environment to maximize cumulative reward.
• Examples:

o Game Playing: Training agents to play games like chess or Go.
o Robotics: Teaching robots to navigate and perform tasks in dynamic environments.

b. Deep Q-Networks (DQN)
• Context: Handling complex environments with high-dimensional state spaces.
• Examples:

o Autonomous Vehicles: Learning to drive by interacting with simulated environments.
o Complex Game Strategies: Improving performance in complex games with large state

spaces.
4. Semi-Supervised Learning
a. Self-Training

• Context: Using a small amount of labeled data and a large amount of unlabeled data to improve
model performance.

• Examples:
o Text Classification: Enhancing performance with limited labeled text data.
o Image Classification: Improving accuracy with few labeled images and many unlabeled

ones.
5. Natural Language Processing (NLP)
a. Recurrent Neural Networks (RNNs)

• Context: Processing sequences of data where context from previous steps is important.
• Examples:

o Language Modeling: Predicting the next word in a sentence.
o Speech Recognition: Converting spoken language into text.

b. Transformers (e.g., BERT, GPT)
• Context: Handling tasks requiring understanding of context and long-range dependencies.
• Examples:

o Text Summarization: Generating concise summaries of long documents.
o Question Answering: Answering questions based on context from a document.

6. Graph-Based Approaches
a. Graph Neural Networks (GNNs)

• Context: Learning from data represented as graphs with nodes and edges.
• Examples:

o Social Network Analysis: Understanding relationships and influence within social
networks.

o Knowledge Graphs: Enhancing search and recommendation systems with entity
relationships.

7. Image Processing
a. Convolutional Neural Networks (CNNs)

• Context: Handling image data and learning spatial hierarchies.
• Examples:

o Object Detection: Identifying and locating objects within images.
o Facial Recognition: Recognizing and verifying faces in images.

8. Spatial Analysis
a. Spatial Data Mining

• Context: Analyzing spatial and geographic data to uncover patterns.
• Examples:

o Urban Planning: Analyzing geographic data to plan city infrastructure.
o Environmental Monitoring: Studying environmental changes and patterns.

Summary

• Supervised Learning: Suitable for predictive tasks with labeled data.
• Unsupervised Learning: Useful for discovering patterns and relationships in unlabeled data.
• Reinforcement Learning: Ideal for decision-making problems in dynamic environments.
• NLP: Focuses on tasks involving language and text data.
• Graph-Based Approaches: Useful for data represented as networks or graphs.
• Image Processing: Specialized techniques for analyzing and interpreting image data.
• Spatial Analysis: Analyzes geographic and spatial data for insights.

Resources:

PCA: https://builtin.com/data-science/step-step-explanation-principal-component-analysis
Factor Analysis: https://www.datamation.com/big-data/what-is-factor-analysis/
Association Rules: https://www.geeksforgeeks.org/association-rule/
Neural Network Models: https://www.seldon.io/neural-network-models-explained/
Recurrent Neural Network (RNN): https://www.ibm.com/think/topics/recurrent-neural-networks
Feed Forward Neural Network: https://www.geeksforgeeks.org/feedforward-neural-network/
Deep Neural Network: https://www.sciencedirect.com/topics/computer-science/deep-neural-network
Convolutional Neural Networks: https://www.geeksforgeeks.org/introduction-convolution-neural-
network/
Generative Adversarial Neural Network: https://machinelearningmastery.com/what-are-generative-
adversarial-networks-gans/
Transformer Neural Networks: https://builtin.com/artificial-intelligence/transformer-neural-network
LSTM networks: https://www.geeksforgeeks.org/deep-learning-introduction-to-long-short-term-
memory/
Graph Neural Networks: https://distill.pub/2021/gnn-intro/

Lecture Outline: Clustering Methods and Rescaling in Python
Duration: 50 minutes

1. Introduction to Clustering Methods (5 minutes)

• Objective: Understand the concept of clustering and its applications.
• Content:

o Definition: Clustering is an unsupervised learning technique used to group similar data
points into clusters.

o Applications: Market segmentation, social network analysis, image compression.

2. K-Means Clustering (10 minutes)

• Objective: Implement and understand K-Means clustering in Python.
• Content:

o Using scikit-learn:
import numpy as np
import pandas as pd
from sklearn.cluster import KMeans
from sklearn.datasets import make_blobs
import matplotlib.pyplot as plt

Generate synthetic data
X, _ = make_blobs(n_samples=300, centers=4, cluster_std=0.60, random_state=0)

Fit K-Means
kmeans = KMeans(n_clusters=4)
kmeans.fit(X)
y_kmeans = kmeans.predict(X)

Plot
plt.scatter(X[:, 0], X[:, 1], c=y_kmeans, s=50, cmap='viridis')
centers = kmeans.cluster_centers_
plt.scatter(centers[:, 0], centers[:, 1], c='red', s=200, alpha=0.75)

https://builtin.com/data-science/step-step-explanation-principal-component-analysis
https://www.datamation.com/big-data/what-is-factor-analysis/
https://www.geeksforgeeks.org/association-rule/
https://www.seldon.io/neural-network-models-explained/
https://www.ibm.com/think/topics/recurrent-neural-networks
https://www.geeksforgeeks.org/feedforward-neural-network/
https://www.sciencedirect.com/topics/computer-science/deep-neural-network
https://www.geeksforgeeks.org/introduction-convolution-neural-network/
https://www.geeksforgeeks.org/introduction-convolution-neural-network/
https://machinelearningmastery.com/what-are-generative-adversarial-networks-gans/
https://machinelearningmastery.com/what-are-generative-adversarial-networks-gans/
https://builtin.com/artificial-intelligence/transformer-neural-network
https://www.geeksforgeeks.org/deep-learning-introduction-to-long-short-term-memory/
https://www.geeksforgeeks.org/deep-learning-introduction-to-long-short-term-memory/
https://distill.pub/2021/gnn-intro/

plt.title('K-Means Clustering')
plt.show()

•
o Discussion:

▪ Choosing K: Use methods like the Elbow Method to determine the number of
clusters.

▪ Pitfalls: K-Means assumes spherical clusters and can be sensitive to initial cluster
centers.

3. DBSCAN (Density-Based Spatial Clustering of Applications with Noise) (10 minutes)

• Objective: Implement and understand DBSCAN in Python.
• Content:

o Using scikit-learn:

from sklearn.cluster import DBSCAN

Fit DBSCAN
dbscan = DBSCAN(eps=0.5, min_samples=5)
y_dbscan = dbscan.fit_predict(X)

Plot
plt.scatter(X[:, 0], X[:, 1], c=y_dbscan, s=50, cmap='viridis')
plt.title('DBSCAN Clustering')
plt.show()

•
o Discussion:

▪ Advantages: Can find arbitrarily shaped clusters and is robust to noise.
▪ Pitfalls: Requires careful selection of the eps parameter and min_samples.

4. Hierarchical Clustering (10 minutes)

• Objective: Implement and understand Hierarchical Clustering in Python.
• Content:

o Using scipy:

from scipy.cluster.hierarchy import dendrogram, linkage, fcluster

Perform hierarchical clustering
Z = linkage(X, 'ward')
plt.figure(figsize=(10, 7))
dendrogram(Z)
plt.title('Dendrogram')
plt.show()

Cut the dendrogram to form clusters
clusters = fcluster(Z, t=4, criterion='maxclust')

plt.scatter(X[:, 0], X[:, 1], c=clusters, s=50, cmap='viridis')
plt.title('Hierarchical Clustering')
plt.show()

•
o Discussion:

▪ Advantages: Does not require a predefined number of clusters.
▪ Pitfalls: Computationally expensive for large datasets.

5. Clustering with HDBSCAN (Hierarchical DBSCAN) (8 minutes)

• Objective: Use HDBSCAN for clustering with better performance on varying densities.
• Content:

o Using hdbscan:

import hdbscan

Fit HDBSCAN
hdbscan_model = hdbscan.HDBSCAN(min_cluster_size=10)
y_hdbscan = hdbscan_model.fit_predict(X)

Plot
plt.scatter(X[:, 0], X[:, 1], c=y_hdbscan, s=50, cmap='viridis')
plt.title('HDBSCAN Clustering')
plt.show()

•
o Discussion:

▪ Advantages: Effective at handling varying densities and shapes.
▪ Pitfalls: Requires tuning of min_cluster_size and other parameters.

6. Rescaling Methods (7 minutes)

• Objective: Understand and apply rescaling methods in data preprocessing.
• Content:

o Standardization (Z-score Normalization):

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

Min-Max Scaling:

from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler()
X_minmax = scaler.fit_transform(X)

•

o Discussion:
▪ Standardization: Centers data around zero with unit variance.
▪ Min-Max Scaling: Scales data to a specific range, usually [0, 1].

7. Pitfalls of Rescaling Before vs. After Train-Test Split (5 minutes)

• Objective: Understand the impact of rescaling on model evaluation.
• Content:

o Rescaling Before Train-Test Split:
▪ Pitfall: Data leakage, as information from the test set can influence scaling

parameters.
▪ Solution: Always perform rescaling after splitting the data.

o Rescaling After Train-Test Split:
▪ Correct Approach: Fit the scaler on the training data and apply the same

transformation to the test data.

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)

•
o Discussion: Ensures that test data remains unseen and unbiased during training.

8. Q&A and Discussion (5 minutes)

• Objective: Address questions and discuss practical considerations for clustering and rescaling.
• Content:

o Q&A Session: Open the floor for student questions.
o Discussion: Explore scenarios and best practices for clustering and rescaling in various

data contexts.

Key Takeaways

• Clustering Methods: Overview of K-Means, DBSCAN, Hierarchical Clustering, and HDBSCAN with
practical examples.

• Rescaling: Importance of rescaling in preprocessing and the correct approach to avoid data
leakage.

• Python Libraries: Practical implementations using scikit-learn, scipy, and hdbscan.

Resources:
Which rescaling method should I use?: https://medium.com/@hhuseyincosgun/which-data-scaling-
technique-should-i-use-a1615292061e
Clustering in Machine Learning: https://www.geeksforgeeks.org/clustering-in-machine-learning/
K-Means: https://www.geeksforgeeks.org/k-means-clustering-introduction/
DBSCAN: https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html
Hierarchical Clustering: https://www.datacamp.com/tutorial/introduction-hierarchical-clustering-python
Hierarchical DBSCAN: https://scikit-learn.org/stable/modules/generated/sklearn.cluster.HDBSCAN.html
When to rescale?: https://dev.to/gervaisamoah/why-feature-scaling-should-be-done-after-splitting-your-
dataset-into-training-and-test-sets-14ia#

https://medium.com/@hhuseyincosgun/which-data-scaling-technique-should-i-use-a1615292061e
https://medium.com/@hhuseyincosgun/which-data-scaling-technique-should-i-use-a1615292061e
https://www.geeksforgeeks.org/clustering-in-machine-learning/
https://www.geeksforgeeks.org/k-means-clustering-introduction/
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html
https://www.datacamp.com/tutorial/introduction-hierarchical-clustering-python
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.HDBSCAN.html
https://dev.to/gervaisamoah/why-feature-scaling-should-be-done-after-splitting-your-dataset-into-training-and-test-sets-14ia
https://dev.to/gervaisamoah/why-feature-scaling-should-be-done-after-splitting-your-dataset-into-training-and-test-sets-14ia

Spectral Clustering: https://scikit-
learn.org/stable/modules/generated/sklearn.cluster.SpectralClustering.html
Fuzzy Clustering: https://www.geeksforgeeks.org/ml-fuzzy-clustering/
Mean Shift Clustering: https://www.geeksforgeeks.org/ml-fuzzy-clustering/
Affinity Propagation: https://scikit-
learn.org/stable/modules/generated/sklearn.cluster.AffinityPropagation.html
OPTICS: https://www.geeksforgeeks.org/ml-optics-clustering-implementing-using-sklearn/
BIRCH: https://scikit-learn.org/stable/modules/generated/sklearn.cluster.Birch.html

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.SpectralClustering.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.SpectralClustering.html
https://www.geeksforgeeks.org/ml-fuzzy-clustering/
https://www.geeksforgeeks.org/ml-fuzzy-clustering/
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AffinityPropagation.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AffinityPropagation.html
https://www.geeksforgeeks.org/ml-optics-clustering-implementing-using-sklearn/
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.Birch.html

