
DSA 610 Redesign, Lecture 10 Outline 
 
Lecture Outline: Parallel Processing, Hadoop, Spark, and Online Analytical Processing (OLAP) 
Duration: 50 minutes 

 
1. Introduction to Parallel Processing (5 minutes) 

• Objective: Understand the concept and importance of parallel processing in data analysis. 
• Content: 

o Definition: Parallel processing involves performing multiple computations 
simultaneously to speed up data processing tasks. 

o Benefits: 
▪ Increased Speed: Reduced processing time for large datasets. 
▪ Efficiency: Better utilization of computing resources. 

 
2. Hadoop (12 minutes) 

• Objective: Explore Hadoop and its role in distributed data processing. 
• Content: 

o 1. Overview: 
▪ Definition: An open-source framework for processing large datasets across 

clusters of computers using simple programming models. 
▪ Components: 

▪ Hadoop Distributed File System (HDFS): Stores data across multiple 
machines. 

▪ MapReduce: A programming model for processing large datasets in 
parallel. 

o 2. How It Works: 
▪ Data Storage: Data is divided into blocks and distributed across a cluster. 
▪ Data Processing: MapReduce jobs process data in parallel, with a "map" phase 

to distribute work and a "reduce" phase to aggregate results. 
o 3. Example Use Case: 

▪ Log Analysis: Processing and analyzing large web server logs. 
o 4. Advantages and Disadvantages: 

▪ Advantages: 
▪ Scalability: Handles large volumes of data. 
▪ Fault Tolerance: Redundant data storage ensures reliability. 

▪ Disadvantages: 
▪ Complexity: Requires significant setup and configuration. 
▪ Performance: Can be slower for some types of queries compared to 

other systems. 

 
3. Apache Spark (12 minutes) 

• Objective: Understand Spark and its advantages over Hadoop for data processing. 
• Content: 

o 1. Overview: 
▪ Definition: An open-source, distributed computing system designed for fast data 

processing and analytics. 
▪ Components: 

▪ Spark Core: The underlying engine for large-scale data processing. 



▪ Spark SQL: For querying data using SQL. 
▪ Spark Streaming: For processing real-time data streams. 
▪ MLlib: Machine learning library. 
▪ GraphX: For graph processing. 

o 2. How It Works: 
▪ In-Memory Processing: Spark stores intermediate data in memory, speeding up 

processing. 
▪ Resilient Distributed Datasets (RDDs): Fault-tolerant data structures for 

distributed computing. 
o 3. Example Use Case: 

▪ Real-Time Analytics: Processing and analyzing streaming data from social media 
or IoT devices. 

o 4. Advantages and Disadvantages: 
▪ Advantages: 

▪ Speed: Faster processing due to in-memory operations. 
▪ Flexibility: Supports various data processing tasks. 

▪ Disadvantages: 
▪ Memory Usage: High memory requirements for in-memory processing. 
▪ Complexity: Requires knowledge of Spark's APIs and architecture. 

 
4. Online Analytical Processing (OLAP) (10 minutes) 

• Objective: Learn about OLAP and its role in data analysis and reporting. 
• Content: 

o 1. Overview: 
▪ Definition: OLAP systems allow users to interactively analyze multidimensional 

data from multiple perspectives. 
▪ Types: 

▪ MOLAP (Multidimensional OLAP): Uses multidimensional data cubes. 
▪ ROLAP (Relational OLAP): Uses relational databases to provide OLAP 

capabilities. 
o 2. Key Features: 

▪ Multidimensional Analysis: Enables slicing, dicing, and drilling down into data. 
▪ Aggregations: Pre-computed summaries for fast querying. 

o 3. Example Use Case: 
▪ Sales Analysis: Analyzing sales data across different dimensions such as time, 

geography, and product categories. 
o 4. Advantages and Disadvantages: 

▪ Advantages: 
▪ Ease of Use: User-friendly interfaces for complex queries. 
▪ Performance: Fast query response times for analytical queries. 

▪ Disadvantages: 
▪ Cost: High setup and maintenance costs. 
▪ Scalability: Can be limited by the size of pre-computed data cubes. 

 
5. Comparative Overview (5 minutes) 

• Objective: Compare and contrast Hadoop, Spark, and OLAP systems in terms of use cases and 
performance. 

• Content: 



o Hadoop vs. Spark: 
▪ Hadoop: Best for batch processing and large-scale data storage. 
▪ Spark: Ideal for fast, iterative processing and real-time analytics. 

o OLAP vs. Hadoop/Spark: 
▪ OLAP: Focuses on interactive data analysis and reporting. 
▪ Hadoop/Spark: Focus on large-scale data processing and analytics. 

 
6. Q&A and Discussion (6 minutes) 

• Objective: Address questions and discuss practical applications of parallel processing, Hadoop, 
Spark, and OLAP. 

• Content: 
o Q&A Session: Open the floor for student questions. 
o Discussion: Explore scenarios where each technology might be used and the trade-offs 

involved. 

 
Key Takeaways 

• Parallel Processing: Essential for speeding up data processing tasks. 
• Hadoop: A framework for distributed data processing using HDFS and MapReduce. 
• Spark: A fast, in-memory processing engine with a wide range of capabilities. 
• OLAP: Provides multidimensional analysis and interactive reporting. 

 
Resources: 
Parallel Processing: https://www.spiceworks.com/tech/iot/articles/what-is-parallel-processing/ 
Hadoop & HDFS: https://www.geeksforgeeks.org/how-does-hadoop-handle-parallel-processing-of-large-
datasets-across-a-distributed-cluster/ 
MapReduce: https://courses.cs.washington.edu/courses/cse490h/07wi/readings/IntroductionToParallelP
rogrammingAndMapReduce.pdf 
Apache Spark: https://www.databricks.com/glossary/what-is-apache-spark 
Pyspark: https://www.datacamp.com/tutorial/pyspark-tutorial-getting-started-with-pyspark 
Online Analytic Processing (OLAP): https://aws.amazon.com/what-is/olap/ 
OLAP, ROLAP, MOLAP, HOLAP: https://www.sisense.com/glossary/olap/ 
 
1. Introduction to Machine Learning Models (5 minutes) 

• Objective: Understand the broad categories of machine learning models and their purposes. 
• Content: 

o Definition: 
▪ Machine Learning Models: Algorithms and techniques used to analyze and 

interpret data, make predictions, and automate decision-making. 
o Categories: 

▪ Supervised Learning 
▪ Unsupervised Learning 
▪ Semi-Supervised Learning 
▪ Reinforcement Learning 
▪ Natural Language Processing (NLP) 
▪ Neural Networks 
▪ Graph-Based Approaches 
▪ Image Processing 
▪ Spatial Analysis 
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2. Supervised Learning (10 minutes) 

• Objective: Understand the purpose and methods of supervised learning. 
• Content: 

o Definition: 
▪ Supervised Learning: Models trained on labeled data where the outcome is 

known. 
o Purpose: 

▪ Prediction: Forecasting future values (regression) or classifying data into 
categories (classification). 

o Common Algorithms: 
▪ Linear Regression 
▪ Logistic Regression 
▪ Support Vector Machines (SVMs) 
▪ Decision Trees and Random Forests 

o Pre-Processing: 
▪ Label Encoding 
▪ Feature Scaling 
▪ Handling Missing Values 

 
3. Unsupervised Learning (10 minutes) 

• Objective: Explore the goals and methods of unsupervised learning. 
• Content: 

o Definition: 
▪ Unsupervised Learning: Models trained on unlabeled data to identify hidden 

patterns or groupings. 
o Purpose: 

▪ Clustering: Grouping similar data points (e.g., K-Means, Hierarchical Clustering). 
▪ Dimensionality Reduction: Reducing the number of features while retaining 

important information (e.g., PCA). 
o Common Algorithms: 

▪ K-Means Clustering 
▪ Principal Component Analysis (PCA) 
▪ Hierarchical Clustering 

o Pre-Processing: 
▪ Feature Scaling 
▪ Normalization 
▪ Handling Missing Values 

 
4. Semi-Supervised Learning (5 minutes) 

• Objective: Understand how semi-supervised learning combines labeled and unlabeled data. 
• Content: 

o Definition: 
▪ Semi-Supervised Learning: Uses a small amount of labeled data and a large 

amount of unlabeled data. 
o Purpose: 

▪ Improving Model Accuracy: Enhancing performance when labeled data is 
scarce. 



o Common Techniques: 
▪ Self-Training 
▪ Co-Training 

o Pre-Processing: 
▪ Similar to supervised learning, with an emphasis on handling large amounts of 

unlabeled data. 

 
5. Reinforcement Learning (5 minutes) 

• Objective: Explore the concepts and methods of reinforcement learning. 
• Content: 

o Definition: 
▪ Reinforcement Learning: Models learn to make decisions by receiving rewards 

or penalties. 
o Purpose: 

▪ Decision Making: Optimizing actions in sequential environments (e.g., game 
playing, robotics). 

o Common Algorithms: 
▪ Q-Learning 
▪ Deep Q-Networks (DQN) 
▪ Policy Gradient Methods 

o Pre-Processing: 
▪ Reward Shaping 
▪ Feature Engineering for Environment States 

 
6. Natural Language Processing (NLP) (5 minutes) 

• Objective: Understand the goals and methods of NLP. 
• Content: 

o Definition: 
▪ NLP: Techniques for processing and analyzing human language data. 

o Purpose: 
▪ Text Classification: Categorizing text data (e.g., sentiment analysis, spam 

detection). 
▪ Named Entity Recognition (NER): Identifying entities in text. 

o Common Techniques: 
▪ Bag of Words (BoW) 
▪ TF-IDF 
▪ Word Embeddings (Word2Vec, GloVe) 

o Pre-Processing: 
▪ Tokenization 
▪ Stop-word Removal 
▪ Text Normalization (stemming, lemmatization) 

 
7. Neural Networks (5 minutes) 

• Objective: Provide a broad overview of neural networks and their applications. 
• Content: 

o Definition: 
▪ Neural Networks: Models inspired by the human brain, composed of 

interconnected layers of nodes (neurons). 



o Purpose: 
▪ Pattern Recognition: Learning complex patterns in data. 

o Types: 
▪ Feedforward Neural Networks 
▪ Convolutional Neural Networks (CNNs) 
▪ Recurrent Neural Networks (RNNs) 

o Pre-Processing: 
▪ Feature Scaling 
▪ Normalization 

 
8. Graph-Based Approaches (5 minutes) 

• Objective: Understand the use of graph-based methods in machine learning. 
• Content: 

o Definition: 
▪ Graph-Based Approaches: Models that use graph structures to represent data. 

o Purpose: 
▪ Network Analysis: Understanding relationships and interactions (e.g., social 

networks, web graphs). 
o Common Techniques: 

▪ Graph Neural Networks (GNNs) 
▪ PageRank Algorithm 

o Pre-Processing: 
▪ Graph Construction 
▪ Feature Extraction from Graphs 

 
9. Image Processing (5 minutes) 

• Objective: Explore image processing techniques and their applications. 
• Content: 

o Definition: 
▪ Image Processing: Techniques for analyzing and interpreting visual data. 

o Purpose: 
▪ Object Detection and Classification: Identifying and labeling objects in images. 

o Common Techniques: 
▪ Convolutional Neural Networks (CNNs) 
▪ Image Segmentation 

o Pre-Processing: 
▪ Image Normalization 
▪ Data Augmentation 

 
10. Spatial Analysis (5 minutes) 

• Objective: Understand the applications and methods for spatial data analysis. 
• Content: 

o Definition: 
▪ Spatial Analysis: Analyzing data with a spatial component (e.g., geographic 

data). 
o Purpose: 

▪ Geospatial Analysis: Understanding spatial patterns and relationships (e.g., 
heatmaps, spatial clustering). 



o Common Techniques: 
▪ Geographic Information Systems (GIS) 
▪ Spatial Autocorrelation 

o Pre-Processing: 
▪ Geocoding 
▪ Spatial Data Cleaning 

 
11. Q&A and Discussion (5 minutes) 

• Objective: Address questions and discuss practical applications of different model types. 
• Content: 

o Q&A Session: Open the floor for student questions. 
o Discussion: Explore real-world applications and challenges associated with various 

models. 

 
Key Takeaways 

• Model Categories: Understanding the different types of machine learning models and their 
purposes. 

• Pre-Processing: Overview of the necessary data preparation for various model types. 
• Applications: Insight into how different models operate on different types of data and their 

practical uses. 
 
Here’s a guide to various machine learning models and the contexts in which they are most appropriate: 
1. Supervised Learning 
a. Linear Regression 

• Context: Predicting a continuous value based on one or more features. 
• Examples: 

o Real Estate: Predicting house prices based on features like square footage, number of 
bedrooms, etc. 

o Finance: Forecasting future stock prices based on historical data. 
b. Logistic Regression 

• Context: Binary classification problems where the output is a probability that can be mapped to 
two classes. 

• Examples: 
o Healthcare: Predicting whether a patient has a disease (e.g., diabetes) based on medical 

test results. 
o Marketing: Classifying emails as spam or not spam. 

c. Decision Trees 
• Context: Classification or regression tasks with interpretable results. 
• Examples: 

o Customer Segmentation: Classifying customers into different segments based on 
purchasing behavior. 

o Credit Scoring: Evaluating creditworthiness based on applicant features. 
d. Random Forest 

• Context: Classification or regression tasks with high accuracy and robustness to overfitting. 
• Examples: 

o Fraud Detection: Identifying fraudulent transactions by combining results from multiple 
decision trees. 

o Medical Diagnosis: Predicting disease presence with complex datasets. 



e. Support Vector Machines (SVM) 
• Context: Classification tasks with a clear margin of separation between classes. 
• Examples: 

o Image Classification: Recognizing handwritten digits (e.g., MNIST dataset). 
o Text Classification: Classifying news articles into topics. 

f. K-Nearest Neighbors (KNN) 
• Context: Classification or regression where relationships between instances are based on 

similarity. 
• Examples: 

o Recommendation Systems: Recommending products based on the similarity to other 
users' preferences. 

o Pattern Recognition: Identifying patterns in image data. 
g. Neural Networks 

• Context: Complex tasks requiring learning from large amounts of data with non-linear 
relationships. 

• Examples: 
o Image Recognition: Identifying objects within images (e.g., facial recognition). 
o Natural Language Processing: Machine translation, sentiment analysis. 

2. Unsupervised Learning 
a. Clustering (e.g., K-Means) 

• Context: Grouping similar data points together without prior labels. 
• Examples: 

o Market Segmentation: Grouping customers based on purchasing behavior. 
o Anomaly Detection: Identifying unusual patterns in network traffic. 

b. Principal Component Analysis (PCA) 
• Context: Dimensionality reduction for visualizing and interpreting high-dimensional data. 
• Examples: 

o Data Visualization: Reducing dimensions of gene expression data for visualization. 
o Feature Extraction: Simplifying data for further analysis. 

c. Association Rule Learning (e.g., Apriori) 
• Context: Finding relationships between variables in large datasets. 
• Examples: 

o Market Basket Analysis: Discovering associations between items purchased together. 
o Recommender Systems: Identifying products frequently bought together. 

3. Reinforcement Learning 
a. Q-Learning 

• Context: Learning optimal actions in a given environment to maximize cumulative reward. 
• Examples: 

o Game Playing: Training agents to play games like chess or Go. 
o Robotics: Teaching robots to navigate and perform tasks in dynamic environments. 

b. Deep Q-Networks (DQN) 
• Context: Handling complex environments with high-dimensional state spaces. 
• Examples: 

o Autonomous Vehicles: Learning to drive by interacting with simulated environments. 
o Complex Game Strategies: Improving performance in complex games with large state 

spaces. 
4. Semi-Supervised Learning 
a. Self-Training 



• Context: Using a small amount of labeled data and a large amount of unlabeled data to improve 
model performance. 

• Examples: 
o Text Classification: Enhancing performance with limited labeled text data. 
o Image Classification: Improving accuracy with few labeled images and many unlabeled 

ones. 
5. Natural Language Processing (NLP) 
a. Recurrent Neural Networks (RNNs) 

• Context: Processing sequences of data where context from previous steps is important. 
• Examples: 

o Language Modeling: Predicting the next word in a sentence. 
o Speech Recognition: Converting spoken language into text. 

b. Transformers (e.g., BERT, GPT) 
• Context: Handling tasks requiring understanding of context and long-range dependencies. 
• Examples: 

o Text Summarization: Generating concise summaries of long documents. 
o Question Answering: Answering questions based on context from a document. 

6. Graph-Based Approaches 
a. Graph Neural Networks (GNNs) 

• Context: Learning from data represented as graphs with nodes and edges. 
• Examples: 

o Social Network Analysis: Understanding relationships and influence within social 
networks. 

o Knowledge Graphs: Enhancing search and recommendation systems with entity 
relationships. 

7. Image Processing 
a. Convolutional Neural Networks (CNNs) 

• Context: Handling image data and learning spatial hierarchies. 
• Examples: 

o Object Detection: Identifying and locating objects within images. 
o Facial Recognition: Recognizing and verifying faces in images. 

8. Spatial Analysis 
a. Spatial Data Mining 

• Context: Analyzing spatial and geographic data to uncover patterns. 
• Examples: 

o Urban Planning: Analyzing geographic data to plan city infrastructure. 
o Environmental Monitoring: Studying environmental changes and patterns. 

 
Summary 

• Supervised Learning: Suitable for predictive tasks with labeled data. 
• Unsupervised Learning: Useful for discovering patterns and relationships in unlabeled data. 
• Reinforcement Learning: Ideal for decision-making problems in dynamic environments. 
• NLP: Focuses on tasks involving language and text data. 
• Graph-Based Approaches: Useful for data represented as networks or graphs. 
• Image Processing: Specialized techniques for analyzing and interpreting image data. 
• Spatial Analysis: Analyzes geographic and spatial data for insights. 

 
Resources: 



PCA: https://builtin.com/data-science/step-step-explanation-principal-component-analysis 
Factor Analysis: https://www.datamation.com/big-data/what-is-factor-analysis/ 
Association Rules: https://www.geeksforgeeks.org/association-rule/ 
Neural Network Models: https://www.seldon.io/neural-network-models-explained/ 
Recurrent Neural Network (RNN): https://www.ibm.com/think/topics/recurrent-neural-networks 
Feed Forward Neural Network: https://www.geeksforgeeks.org/feedforward-neural-network/ 
Deep Neural Network: https://www.sciencedirect.com/topics/computer-science/deep-neural-network 
Convolutional Neural Networks: https://www.geeksforgeeks.org/introduction-convolution-neural-
network/ 
Generative Adversarial Neural Network: https://machinelearningmastery.com/what-are-generative-
adversarial-networks-gans/ 
Transformer Neural Networks: https://builtin.com/artificial-intelligence/transformer-neural-network 
LSTM networks: https://www.geeksforgeeks.org/deep-learning-introduction-to-long-short-term-
memory/ 
Graph Neural Networks: https://distill.pub/2021/gnn-intro/ 
 
Lecture Outline: Clustering Methods and Rescaling in Python 
Duration: 50 minutes 

 
1. Introduction to Clustering Methods (5 minutes) 

• Objective: Understand the concept of clustering and its applications. 
• Content: 

o Definition: Clustering is an unsupervised learning technique used to group similar data 
points into clusters. 

o Applications: Market segmentation, social network analysis, image compression. 

 
2. K-Means Clustering (10 minutes) 

• Objective: Implement and understand K-Means clustering in Python. 
• Content: 

o Using scikit-learn: 
import numpy as np 
import pandas as pd 
from sklearn.cluster import KMeans 
from sklearn.datasets import make_blobs 
import matplotlib.pyplot as plt 
 
# Generate synthetic data 
X, _ = make_blobs(n_samples=300, centers=4, cluster_std=0.60, random_state=0) 
 
# Fit K-Means 
kmeans = KMeans(n_clusters=4) 
kmeans.fit(X) 
y_kmeans = kmeans.predict(X) 
 
# Plot 
plt.scatter(X[:, 0], X[:, 1], c=y_kmeans, s=50, cmap='viridis') 
centers = kmeans.cluster_centers_ 
plt.scatter(centers[:, 0], centers[:, 1], c='red', s=200, alpha=0.75) 
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plt.title('K-Means Clustering') 
plt.show() 
 

•  
o Discussion: 

▪ Choosing K: Use methods like the Elbow Method to determine the number of 
clusters. 

▪ Pitfalls: K-Means assumes spherical clusters and can be sensitive to initial cluster 
centers. 

 
3. DBSCAN (Density-Based Spatial Clustering of Applications with Noise) (10 minutes) 

• Objective: Implement and understand DBSCAN in Python. 
• Content: 

o Using scikit-learn: 
 
from sklearn.cluster import DBSCAN 
 
# Fit DBSCAN 
dbscan = DBSCAN(eps=0.5, min_samples=5) 
y_dbscan = dbscan.fit_predict(X) 
 
# Plot 
plt.scatter(X[:, 0], X[:, 1], c=y_dbscan, s=50, cmap='viridis') 
plt.title('DBSCAN Clustering') 
plt.show() 
 

•  
o Discussion: 

▪ Advantages: Can find arbitrarily shaped clusters and is robust to noise. 
▪ Pitfalls: Requires careful selection of the eps parameter and min_samples. 

 
4. Hierarchical Clustering (10 minutes) 

• Objective: Implement and understand Hierarchical Clustering in Python. 
• Content: 

o Using scipy: 
 
 
from scipy.cluster.hierarchy import dendrogram, linkage, fcluster 
 
# Perform hierarchical clustering 
Z = linkage(X, 'ward') 
plt.figure(figsize=(10, 7)) 
dendrogram(Z) 
plt.title('Dendrogram') 
plt.show() 
 
# Cut the dendrogram to form clusters 
clusters = fcluster(Z, t=4, criterion='maxclust') 



plt.scatter(X[:, 0], X[:, 1], c=clusters, s=50, cmap='viridis') 
plt.title('Hierarchical Clustering') 
plt.show() 
 

•  
o Discussion: 

▪ Advantages: Does not require a predefined number of clusters. 
▪ Pitfalls: Computationally expensive for large datasets. 

 
5. Clustering with HDBSCAN (Hierarchical DBSCAN) (8 minutes) 

• Objective: Use HDBSCAN for clustering with better performance on varying densities. 
• Content: 

o Using hdbscan: 
 
import hdbscan 
 
# Fit HDBSCAN 
hdbscan_model = hdbscan.HDBSCAN(min_cluster_size=10) 
y_hdbscan = hdbscan_model.fit_predict(X) 
 
# Plot 
plt.scatter(X[:, 0], X[:, 1], c=y_hdbscan, s=50, cmap='viridis') 
plt.title('HDBSCAN Clustering') 
plt.show() 
 

•  
o Discussion: 

▪ Advantages: Effective at handling varying densities and shapes. 
▪ Pitfalls: Requires tuning of min_cluster_size and other parameters. 

 
6. Rescaling Methods (7 minutes) 

• Objective: Understand and apply rescaling methods in data preprocessing. 
• Content: 

o Standardization (Z-score Normalization): 
 
from sklearn.preprocessing import StandardScaler 
 
scaler = StandardScaler() 
X_scaled = scaler.fit_transform(X) 
 
Min-Max Scaling: 
 
from sklearn.preprocessing import MinMaxScaler 
 
scaler = MinMaxScaler() 
X_minmax = scaler.fit_transform(X) 
 

•  



o Discussion: 
▪ Standardization: Centers data around zero with unit variance. 
▪ Min-Max Scaling: Scales data to a specific range, usually [0, 1]. 

 
7. Pitfalls of Rescaling Before vs. After Train-Test Split (5 minutes) 

• Objective: Understand the impact of rescaling on model evaluation. 
• Content: 

o Rescaling Before Train-Test Split: 
▪ Pitfall: Data leakage, as information from the test set can influence scaling 

parameters. 
▪ Solution: Always perform rescaling after splitting the data. 

o Rescaling After Train-Test Split: 
▪ Correct Approach: Fit the scaler on the training data and apply the same 

transformation to the test data. 
 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) 
 
scaler = StandardScaler() 
X_train_scaled = scaler.fit_transform(X_train) 
X_test_scaled = scaler.transform(X_test) 
 

•  
o Discussion: Ensures that test data remains unseen and unbiased during training. 

 
8. Q&A and Discussion (5 minutes) 

• Objective: Address questions and discuss practical considerations for clustering and rescaling. 
• Content: 

o Q&A Session: Open the floor for student questions. 
o Discussion: Explore scenarios and best practices for clustering and rescaling in various 

data contexts. 

 
Key Takeaways 

• Clustering Methods: Overview of K-Means, DBSCAN, Hierarchical Clustering, and HDBSCAN with 
practical examples. 

• Rescaling: Importance of rescaling in preprocessing and the correct approach to avoid data 
leakage. 

• Python Libraries: Practical implementations using scikit-learn, scipy, and hdbscan. 
 
Resources: 
Which rescaling method should I use?: https://medium.com/@hhuseyincosgun/which-data-scaling-
technique-should-i-use-a1615292061e 
Clustering in Machine Learning: https://www.geeksforgeeks.org/clustering-in-machine-learning/ 
K-Means: https://www.geeksforgeeks.org/k-means-clustering-introduction/ 
DBSCAN: https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html 
Hierarchical Clustering: https://www.datacamp.com/tutorial/introduction-hierarchical-clustering-python 
Hierarchical DBSCAN: https://scikit-learn.org/stable/modules/generated/sklearn.cluster.HDBSCAN.html 
When to rescale?: https://dev.to/gervaisamoah/why-feature-scaling-should-be-done-after-splitting-your-
dataset-into-training-and-test-sets-14ia# 
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Spectral Clustering: https://scikit-
learn.org/stable/modules/generated/sklearn.cluster.SpectralClustering.html 
Fuzzy Clustering: https://www.geeksforgeeks.org/ml-fuzzy-clustering/ 
Mean Shift Clustering: https://www.geeksforgeeks.org/ml-fuzzy-clustering/ 
Affinity Propagation: https://scikit-
learn.org/stable/modules/generated/sklearn.cluster.AffinityPropagation.html 
OPTICS: https://www.geeksforgeeks.org/ml-optics-clustering-implementing-using-sklearn/ 
BIRCH: https://scikit-learn.org/stable/modules/generated/sklearn.cluster.Birch.html 
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