DSA 610 Redesign, Lecture 1 Outline

Lecture Outline: Introduction to Databases and the Data Management Lifecycle Duration: 50 minutes

1. Introduction (5 minutes)

- **Objective:** Set the stage for the lecture by introducing the topic.
- Content:
 - Brief overview of the lecture's goals.
 - Importance of databases in data management.
 - How databases fit into the data management lifecycle.

2. What is a Database? (10 minutes)

- **Objective:** Define what a database is and its fundamental purpose.
- Content:
 - Definition: A database is an organized collection of structured information or data, typically stored electronically in a computer system.
 - Types of Databases:
 - Relational Databases (e.g., MySQL, PostgreSQL): Use tables to store data and SQL for querying.
 - NoSQL Databases (e.g., MongoDB, Cassandra): Designed for unstructured data, scale horizontally.
 - In-Memory Databases (e.g., Redis): Store data in memory for fast access.
 - Core components:
 - Tables, records, fields (in relational databases).
 - Documents, collections (in NoSQL databases).
 - Role of a Database Management System (DBMS): Software that interacts with end-users, applications, and the database itself to capture and analyze data.

3. The Data Management Lifecycle (15 minutes)

- **Objective:** Explain the stages of the data management lifecycle and how databases play a role at each stage.
- Content:

0

- Data Collection: Gathering data from various sources (surveys, sensors, logs).
 - Databases store the raw data collected from different sources.
- Data Storage: Efficiently storing large amounts of data for easy retrieval.
 - Relational vs. non-relational storage, structured vs. unstructured data.
- Data Organization: Structuring data for easy access and analysis.
 - Normalization in relational databases, indexing for performance.
- Data Preparation: Cleaning and transforming data for analysis.
 - ETL processes (Extract, Transform, Load) often involve database operations.
- Data Analysis: Extracting insights from data using various techniques.
 - Querying databases, running statistical analyses, using stored procedures.
 - Data Visualization: Creating visual representations of data for communication.
 - Integration of databases with visualization tools.
- Data Archiving/Destruction: Safely storing or deleting data when it's no longer needed.
 - Role of databases in data retention policies, ensuring compliance.

4. Relational vs. Non-Relational Databases (10 minutes)

- **Objective:** Highlight the differences between relational and non-relational databases.
- Content:
 - Relational Databases:
 - Structured data, predefined schema.
 - Strong ACID (Atomicity, Consistency, Isolation, Durability) properties.
 - Examples: SQL Server, Oracle, MySQL.
 - Non-Relational Databases:
 - Flexible schema, can handle unstructured data.
 - Often used in Big Data and real-time applications.
 - Examples: MongoDB, Cassandra, Redis.
 - Use Cases:
 - Relational: Financial data, customer records.
 - Non-relational: Social media data, IoT data, large-scale distributed data.

5. The Role of Databases in Data-Driven Decision Making (5 minutes)

- **Objective:** Connect the concept of databases to their role in strategic decision making.
- Content:
 - Databases as the backbone of data-driven organizations.
 - Real-time vs. batch processing of data.
 - Examples of how organizations use databases to inform decisions (e.g., customer analytics, operational efficiency).

6. Conclusion & Q&A (5 minutes)

- **Objective:** Recap key points and address any questions.
- Content:
 - o Summary of the importance of databases in the data management lifecycle.
 - How this lecture ties into the broader course objectives.
 - Open the floor for questions and discussion.

Key Takeaways

- Databases are crucial for organizing and managing data throughout its lifecycle.
- Understanding the differences between relational and non-relational databases helps in choosing the right tool for specific tasks.
- Databases support data-driven decision-making by enabling efficient data storage, retrieval, and analysis.

Resources:

DAMA-DMBOK <u>https://www.dama.org/cpages/body-of-knowledge</u> Hadoop and Spark documentation <u>https://spark.apache.org/docs/latest/</u> GDPR <u>https://gdpr-info.eu/</u>

Lecture Outline: Introduction to the Data Analysis Lifecycle and Data Exploration Duration: 50 minutes

1. Introduction (5 minutes)

- **Objective:** Provide an overview of the session's objectives.
- Content:

- Importance of understanding the data analysis lifecycle in data science.
- Introduction to data exploration as a critical step in the lifecycle.
- How these concepts fit into the broader context of data-driven decision making.

2. Overview of the Data Analysis Lifecycle (10 minutes)

- **Objective:** Explain the stages of the data analysis lifecycle and their interconnections.
 - Content:
 - Data Collection:
 - Gathering data from various sources (e.g., surveys, APIs, databases).
 - Importance of data quality at the source.
 - Data Cleaning and Preparation:
 - Handling missing values, outliers, and inconsistencies.
 - Feature engineering and transformation.
 - Data Exploration (EDA):
 - Using statistical methods and visualization to understand the data.
 - Identifying patterns, correlations, and potential anomalies.
 - Data Modeling:
 - Applying statistical models or machine learning algorithms.
 - Model selection, training, and validation.
 - Data Interpretation:
 - Analyzing model results in the context of the problem.
 - Importance of domain knowledge in interpreting results.
 - Data Communication:
 - Presenting findings through reports, dashboards, and visualizations.
 - Tailoring communication for different stakeholders.
 - Data Archiving:
 - Storing data, models, and results for future use.
 - Importance of reproducibility and documentation.

3. Deep Dive into Data Exploration (15 minutes)

- **Objective:** Focus on exploratory data analysis (EDA) as a key stage in the lifecycle.
- Content:
 - Purpose of EDA:
 - Gaining initial insights into the dataset.
 - Identifying relationships, distributions, and potential issues.
 - Techniques and Tools:
 - Descriptive Statistics:
 - Mean, median, mode, standard deviation, etc.
 - How these metrics provide insight into data distribution.
 - Data Visualization:
 - Histograms, box plots, scatter plots, and bar charts.
 - Introduction to Python libraries like Matplotlib, Seaborn, and Pandas for EDA.
 - Correlation Analysis:
 - Understanding relationships between variables.
 - Visualizing correlations using heatmaps.
 - Handling Outliers:
 - Identifying and addressing outliers in the dataset.

- Techniques for dealing with outliers (e.g., transformation, capping).
- Case Study Example:
 - Walkthrough of a simple dataset (e.g., Iris dataset or a sales dataset).
 - Hands-on demonstration of EDA techniques in Python.

4. Importance of Data Cleaning and Preparation (10 minutes)

- **Objective:** Highlight the significance of cleaning and preparing data before analysis.
- Content:
 - Data Cleaning:
 - Identifying missing data and choosing appropriate strategies (e.g., imputation, removal).
 - Dealing with inconsistencies and errors in data entry.
 - Data Transformation:
 - Normalization, standardization, and feature scaling.
 - Creating new features through feature engineering.
 - Practical Tips:
 - Keep track of all cleaning steps for reproducibility.
 - Importance of understanding the context of the data during cleaning.
 - Example:
 - Brief demonstration of data cleaning in Python using Pandas.

5. Integrating EDA with the Broader Data Analysis Lifecycle (5 minutes)

- **Objective:** Show how EDA fits into and informs the rest of the data analysis lifecycle.
- Content:
 - EDA as a foundation for hypothesis generation and model selection.
 - How insights from EDA guide the cleaning and preparation process.
 - EDA as an iterative process that can lead to revisiting earlier stages in the lifecycle.

6. Conclusion & Q&A (5 minutes)

- **Objective:** Recap the key concepts and open the floor for questions.
- Content:
 - Summary of the data analysis lifecycle and the role of EDA.
 - Key takeaways: The importance of understanding your data before diving into modeling.
 - Encourage students to practice EDA on different datasets.
 - Open the floor for questions and discussion.

Key Takeaways

- The data analysis lifecycle is a structured approach to making sense of data, from collection to communication.
- Data exploration (EDA) is a critical step in understanding the characteristics and potential issues in your data.
- Proper data cleaning and preparation are essential for accurate and meaningful analysis.
- EDA is not a one-time process but an iterative one that informs each stage of the lifecycle.

Resources:

CRISP-DM <u>https://www.datascience-pm.com/crisp-dm-2/</u> KDD <u>https://www.kdd.org/</u> TDWI <u>https://tdwi.org/Home.aspx</u>

Lecture Outline: Introduction to the Data Analysis Lifecycle and Data Exploration Duration: 50 minutes

1. Introduction (5 minutes)

- **Objective:** Provide an overview of the session's objectives.
- Content:
 - Importance of understanding the data analysis lifecycle in data science.
 - Introduction to data exploration as a critical step in the lifecycle.
 - \circ $\;$ How these concepts fit into the broader context of data-driven decision making.

2. Overview of the Data Analysis Lifecycle (10 minutes)

- **Objective:** Explain the stages of the data analysis lifecycle and their interconnections.
- Content:
 - \circ Data Collection:
 - Gathering data from various sources (e.g., surveys, APIs, databases).
 - Importance of data quality at the source.
 - Data Cleaning and Preparation:
 - Handling missing values, outliers, and inconsistencies.
 - Feature engineering and transformation.
 - Data Exploration (EDA):
 - Using statistical methods and visualization to understand the data.
 - Identifying patterns, correlations, and potential anomalies.
 - Data Modeling:
 - Applying statistical models or machine learning algorithms.
 - Model selection, training, and validation.
 - Data Interpretation:
 - Analyzing model results in the context of the problem.
 - Importance of domain knowledge in interpreting results.
 - Data Communication:
 - Presenting findings through reports, dashboards, and visualizations.
 - Tailoring communication for different stakeholders.
 - Data Archiving:
 - Storing data, models, and results for future use.
 - Importance of reproducibility and documentation.

3. Deep Dive into Data Exploration (15 minutes)

- **Objective:** Focus on exploratory data analysis (EDA) as a key stage in the lifecycle.
 - Content:
 - Purpose of EDA:
 - Gaining initial insights into the dataset.
 - Identifying relationships, distributions, and potential issues.
 - \circ ~ Techniques and Tools:
 - Descriptive Statistics:
 - Mean, median, mode, standard deviation, etc.
 - How these metrics provide insight into data distribution.
 - Data Visualization:
 - Histograms, box plots, scatter plots, and bar charts.

- Introduction to Python libraries like Matplotlib, Seaborn, and Pandas for EDA.
- Correlation Analysis:
 - Understanding relationships between variables.
 - Visualizing correlations using heatmaps.
- Handling Outliers:
 - Identifying and addressing outliers in the dataset.
 - Techniques for dealing with outliers (e.g., transformation, capping).
- Case Study Example:
 - Walkthrough of a simple dataset (e.g., Iris dataset or a sales dataset).
 - Hands-on demonstration of EDA techniques in Python.

4. Importance of Data Cleaning and Preparation (10 minutes)

- **Objective:** Highlight the significance of cleaning and preparing data before analysis.
- Content:
 - Data Cleaning:
 - Identifying missing data and choosing appropriate strategies (e.g., imputation, removal).
 - Dealing with inconsistencies and errors in data entry.
 - Data Transformation:
 - Normalization, standardization, and feature scaling.
 - Creating new features through feature engineering.
 - Practical Tips:
 - Keep track of all cleaning steps for reproducibility.
 - Importance of understanding the context of the data during cleaning.
 - Example:
 - Brief demonstration of data cleaning in Python using Pandas.

5. Integrating EDA with the Broader Data Analysis Lifecycle (5 minutes)

- **Objective:** Show how EDA fits into and informs the rest of the data analysis lifecycle.
- Content:
 - EDA as a foundation for hypothesis generation and model selection.
 - How insights from EDA guide the cleaning and preparation process.
 - EDA as an iterative process that can lead to revisiting earlier stages in the lifecycle.

6. Conclusion & Q&A (5 minutes)

- **Objective:** Recap the key concepts and open the floor for questions.
- Content:
 - Summary of the data analysis lifecycle and the role of EDA.
 - Key takeaways: The importance of understanding your data before diving into modeling.
 - Encourage students to practice EDA on different datasets.
 - Open the floor for questions and discussion.

Key Takeaways

- The data analysis lifecycle is a structured approach to making sense of data, from collection to communication.
- Data exploration (EDA) is a critical step in understanding the characteristics and potential issues in your data.

- Proper data cleaning and preparation are essential for accurate and meaningful analysis.
- EDA is not a one-time process but an iterative one that informs each stage of the lifecycle.

Lecture Outline: Introduction to Data Analysis in Excel Duration: 50 minutes

1. Introduction to Excel for Data Analysis (5 minutes)

- **Objective:** Provide an overview of Excel's capabilities for data analysis.
- Content:
 - Excel as a tool for data analysis: strengths and limitations.
 - Common use cases: small to medium-sized datasets, quick analyses, and visualizations.
 - Brief introduction to the interface: ribbons, tabs, cells, and worksheets.

2. Entering and Formatting Data (8 minutes)

- **Objective:** Teach students how to manually enter and format data in Excel.
- Content:
 - Manual Data Entry:
 - Entering data into cells, organizing data in rows and columns.
 - Importance of consistency and avoiding empty rows/columns.
 - Data Formatting:
 - Adjusting cell formats (e.g., number, date, currency).
 - Using text formatting (bold, italics, font size) to highlight key information.
 - Conditional formatting for quick visual analysis (e.g., color scales, data bars).
 - **Practice:** Quick demonstration of entering a small dataset and applying formatting.

3. Basic Formulas and Functions (10 minutes)

- **Objective:** Introduce students to basic formulas and functions for data analysis.
- Content:

0

- Basic Formulas:
 - Arithmetic operations: addition (+), subtraction (-), multiplication (*), and division (/).
 - Using cell references in formulas (relative vs. absolute references).
- Essential Functions:
 - **SUM**: Adding a range of numbers.
 - **AVERAGE**: Calculating the mean of a dataset.
 - MEDIAN: Finding the middle value in a dataset.
 - COUNT and COUNTA: Counting cells with numbers or non-empty cells.
 - **IF**: Basic conditional logic in Excel.
- **Practice:** Hands-on example using a small dataset to calculate totals, averages, and apply conditional logic.

4. Basic Statistical Analysis in Excel (12 minutes)

- Objective: Teach students how to perform basic statistical analyses using Excel's built-in functions.
- Content:
 - Descriptive Statistics:
 - MEAN, MEDIAN, MODE: Measures of central tendency.
 - STANDARD DEVIATION (STDEV): Measure of variability.

- **QUARTILES (QUARTILE)**: Dividing data into quarters.
- MIN, MAX, RANGE: Identifying the spread of the data.
- Correlation Analysis:
 - Using the CORREL function to determine the relationship between two variables.
- Statistical Tests:
 - **T-Test (T.TEST)**: Comparing the means of two groups.
 - Chi-Square Test (CHISQ.TEST): Assessing relationships between categorical variables.
 - Note: Mention Excel's limitations and when to use specialized statistical software.
- **Practice:** Walkthrough of a sample dataset to perform basic statistical analyses.

5. Creating Basic Graphs and Charts (10 minutes)

- **Objective:** Demonstrate how to visualize data using basic Excel charts.
- Content:
 - Common Charts:
 - Bar and Column Charts: Comparing quantities across categories.
 - Line Charts: Showing trends over time.
 - **Pie Charts**: Displaying proportions of a whole.
 - Scatter Plots: Showing relationships between two variables.
 - Chart Customization:
 - Adding titles, axis labels, and data labels.
 - Changing chart styles and colors.
 - Formatting chart elements for clarity and emphasis.
 - **Practice:** Creating a bar chart and a scatter plot using sample data.

6. Using Excel's Data Analysis Toolpak (5 minutes)

- **Objective:** Introduce the Data Analysis Toolpak for more advanced statistical analysis.
- Content:
 - Enabling the Toolpak:
 - How to install and activate the Data Analysis Toolpak in Excel.
 - Using the Toolpak:
 - Brief overview of available tools: descriptive statistics, regression, ANOVA, etc.
 - Walkthrough of generating descriptive statistics for a dataset.
 - **Practice:** Demonstrate the use of the Toolpak to perform a quick analysis.

7. Conclusion & Q&A (5 minutes)

- **Objective:** Recap the session and address any questions.
- Content:
 - Summary of the key Excel features covered: data entry, formulas, statistical functions, and charting.
 - \circ $\;$ Emphasize the importance of practicing these skills with real datasets.
 - \circ ~ Open the floor for questions and clarification.

Key Takeaways

• Excel is a versatile tool for basic data analysis, offering a range of functions and visualizations.

- Mastery of Excel's basic features, like data entry, formatting, formulas, and charts, is essential for quick and effective data analysis.
- The Data Analysis Toolpak adds advanced statistical capabilities to Excel, making it a more powerful tool for data-driven decision making.

Resources:

Microsoft Excel Help & Tutorials <u>https://support.microsoft.com/en-us/excel</u> My YouTube Playlist <u>https://www.youtube.com/watch?v=kMXEAEdJvh8&list=PLc023Wgf4h8n34C9CnssfNHMEF5DIUePS&pp</u>

=gAQB

Google Sheets Tutorials/Google Workspace Learning Center https://support.google.com/a/users/?hl=en#topic=11499463