DSA 610 Redesign, Lecture 2 Outline

Lecture Outline: Data Creation Methods and Their Risks/Benefits Duration: 50 minutes

1. Introduction to Data Creation Methods (5 minutes)

- **Objective:** Provide an overview of various data creation methods and their significance in data science.
- Content:
 - Definition of data creation and its role in generating information for analysis.
 - Overview of different data creation methods: structured forms, IoT devices, manual data entry, automated data generation, etc.
 - Importance of understanding the context, source, and quality of the data.

2. Data Creation via Structured Forms (10 minutes)

- **Objective:** Discuss structured data collection methods such as medical forms and surveys.
- Content:
 - Medical Forms & Surveys:
 - Standardized templates for collecting specific data points (e.g., patient information, health metrics).
 - Importance of standardized data for consistent analysis and interoperability across systems.
 - o Benefits:
 - High level of control over the data being collected.
 - Easier to analyze due to the structured format.
 - Enables comparison across different datasets due to standardization.
 - Risks/Cons:
 - Potential for incomplete or inaccurate data due to human error.
 - Standardization may limit the depth or richness of the data collected.
 - Privacy concerns, especially in sensitive fields like healthcare.
 - **Case Study Example:** Using electronic health records (EHR) to demonstrate the use of structured forms in a real-world scenario.

3. Data Creation via IoT Devices (15 minutes)

- **Objective:** Explore how IoT devices contribute to data creation, along with their risks and benefits.
- Content:
 - Introduction to IoT:
 - Definition: Internet of Things (IoT) refers to interconnected devices that collect and transmit data automatically.
 - Examples: Wearables (e.g., fitness trackers), smart home devices, industrial sensors, healthcare monitors.
 - Benefits:
 - Continuous, real-time data collection.
 - Ability to collect large volumes of data (Big Data).
 - Enables predictive analytics and automation.
 - Risks/Cons:
 - Data privacy concerns, especially with personal or sensitive information.

- Security vulnerabilities: IoT devices can be targets for hacking.
- Data quality issues: Inconsistent or inaccurate data due to device malfunctions.
- **Case Study Example:** Use of IoT in smart cities for traffic management, showing both the benefits and the challenges of using IoT-generated data.

4. Automated Data Creation Methods (8 minutes)

- **Objective:** Discuss automated data generation methods such as web scraping and data logs.
- Content:
 - Web Scraping:
 - Collecting data from websites using automated scripts.
 - Common uses: Price tracking, sentiment analysis from social media.
 - Data Logs:
 - Automatically generated records of system events (e.g., server logs, transaction logs).
 - Importance for monitoring, auditing, and security.
 - o Benefits:
 - High efficiency and speed in data collection.
 - Can collect vast amounts of data from diverse sources.
 - Automation reduces the risk of human error.
 - Risks/Cons:
 - Legal and ethical concerns, especially with web scraping (e.g., violating terms of service).
 - Data quality issues if the data is not cleaned and validated.
 - Privacy concerns with sensitive data being logged or scraped.
 - **Example:** Automated web scraping for market analysis, discussing both the advantages and the potential legal risks.

5. Manual Data Entry and Crowdsourced Data Creation (7 minutes)

- **Objective:** Examine the role of manual and crowdsourced data entry in data creation.
- Content:
 - Manual Data Entry:
 - Data input by individuals (e.g., entering survey responses, cataloging information).
 - Common in fields where automation is not feasible or cost-effective.

• Crowdsourced Data Creation:

- Data collected from a large group of people, often through platforms like Amazon Mechanical Turk or citizen science projects.
- Examples: Crowdsourced mapping (e.g., OpenStreetMap), public health data collection.
- Benefits:
 - Flexibility in data collection, especially for unique or nuanced datasets.
 - Crowdsourcing can gather diverse perspectives and large volumes of data quickly.
- **Risks/Cons**:
 - Higher risk of human error, leading to inaccurate or inconsistent data.
 - Quality control challenges with crowdsourced data.
 - Potential for bias in manually entered or crowdsourced data.

• **Example:** Crowdsourcing for disaster response data, discussing the pros and cons of relying on public input.

6. Ethical Considerations and Data Privacy (5 minutes)

- **Objective:** Discuss the ethical implications and privacy concerns related to data creation methods.
- Content:
 - Ethical Issues:
 - Informed consent, especially in medical data collection.
 - Transparency in data collection processes.
 - Avoiding bias in data collection and ensuring representativeness.
 - Data Privacy:
 - Importance of data anonymization and encryption, particularly with sensitive data.
 - Compliance with data protection regulations (e.g., GDPR, HIPAA).
 - **Real-World Examples:** Discuss cases where data privacy was breached and the consequences.

7. Conclusion & Q&A (5 minutes)

- **Objective:** Summarize key points and address any questions.
- Content:
 - Recap of different data creation methods and their respective benefits and risks.
 - Emphasis on the importance of understanding the source and quality of data.
 - Encourage critical thinking about ethical and privacy issues in data creation.
 - Open the floor for questions and discussion.

Key Takeaways

- Different data creation methods serve various purposes, each with unique benefits and risks.
- Understanding the context and quality of data is crucial for meaningful analysis.
- Ethical considerations and privacy concerns are paramount in the data creation process.

Resources:

Strauss, A., & Corbin, J. Basics of Qualitative Research: Techniques and Procedures for Developing Grounded Theory

Tabachnick, B. G., & Fidell, L. S. Using Multivariate Statistics Creswell, J. W., & Plano Clark, V. L. Designing and Conducting Mixed Methods Research

Lecture Outline: Data Collection Methods, Data Discovery, and Experimental Design Duration: 50 minutes

1. Introduction to Data Collection and Discovery (5 minutes)

- **Objective:** Provide an overview of the importance of data collection and discovery in the context of data analysis.
- Content:
 - Introduction to the role of data collection in data analysis.
 - Brief overview of data discovery as the process of identifying and understanding available data.

• The connection between data collection methods, data discovery, and experimental design.

2. Data Collection Methods (15 minutes)

- **Objective:** Discuss various data collection methods, their applications, and considerations.
- Content:
 - Primary Data Collection:
 - Surveys and Questionnaires:
 - Designing effective surveys, types of questions (open vs. closed-ended).
 - Benefits: Control over data collection, specific to the research question.
 - Challenges: Response bias, designing unbiased questions.
 - Interviews and Focus Groups:
 - Gathering qualitative insights through direct interaction.
 - Benefits: In-depth understanding, flexibility in responses.
 - Challenges: Time-consuming, potential interviewer bias.
 - Observational Studies:
 - Collecting data through direct observation without interference.
 - Benefits: Real-world context, natural behavior.
 - Challenges: Observer bias, lack of control over variables.
 - Experiments:
 - Collecting data under controlled conditions to test hypotheses.
 - Benefits: High internal validity, ability to establish causality.
 - Challenges: Limited external validity, ethical considerations.
 - Secondary Data Collection:
 - Existing Databases:
 - Using previously collected data (e.g., government databases, company records).
 - Benefits: Cost-effective, large datasets.
 - Challenges: Limited control over data quality, relevance to current research.
 - Web Scraping:
 - Collecting data from websites using automated scripts.
 - Benefits: Access to real-time data, large-scale data collection.
 - Challenges: Legal and ethical considerations, data quality issues.
 - **Case Study Example:** Compare and contrast primary and secondary data collection using a real-world example (e.g., health studies).

3. Data Discovery (10 minutes)

- **Objective:** Explore the process of data discovery, including finding and assessing relevant data for analysis.
- Content:
 - Definition of Data Discovery:
 - The process of identifying, gathering, and understanding data relevant to a specific analysis.
 - Data Sources and Repositories:
 - Public data repositories (e.g., UCI Machine Learning Repository, Kaggle).
 - Private datasets within organizations.
 - How to assess the relevance and quality of discovered data.

- Data Profiling:
 - Analyzing the structure, content, and quality of discovered data.
 - Techniques for assessing data quality (e.g., checking for missing values, outliers).
- Ethical Considerations:
 - Ensuring data privacy and compliance with regulations (e.g., GDPR).
 - Transparency in data usage and sourcing.
- **Practical Example:** Demonstration of data discovery and profiling using a sample dataset (e.g., public health data).

4. Introduction to Experimental Design (15 minutes)

- **Objective:** Introduce the principles of experimental design, focusing on the relationship between experimental design and data collection.
- Content:
 - **Definition and Purpose:**
 - Designing experiments to test hypotheses and understand causality.
 - Importance of experimental design in ensuring valid and reliable results.
 - Key Concepts:
 - Variables: Independent, dependent, and confounding variables.
 - **Control Groups:** Establishing a baseline for comparison.
 - **Randomization:** Reducing bias by randomly assigning participants or conditions.
 - **Replication:** Ensuring that results can be reproduced.
 - Types of Experimental Designs:
 - Between-Subjects Design: Different groups are exposed to different conditions.
 - Within-Subjects Design: The same group is exposed to all conditions.
 - Factorial Design: Studying the effects of two or more variables simultaneously.
 - Challenges in Experimental Design:
 - Ensuring internal and external validity.
 - Managing ethical considerations, especially in human studies.
 - **Example:** Walkthrough of designing a simple experiment, such as testing the effect of different teaching methods on student performance.

5. Integrating Data Collection, Discovery, and Experimental Design (5 minutes)

- **Objective:** Show how data collection, discovery, and experimental design are interconnected in the context of data analysis.
- Content:
 - The role of data discovery in identifying data for both observational and experimental studies.
 - How experimental design informs the data collection process, ensuring that collected data is relevant and reliable.
 - The iterative nature of these processes: Data discovery can inform experimental design, and experimental outcomes can guide further data collection.

6. Conclusion & Q&A (5 minutes)

- **Objective:** Summarize the key points and open the floor for questions.
- Content:
 - Recap of data collection methods, data discovery, and experimental design.
 - Emphasize the importance of careful planning and ethical considerations in data analysis.

- Encourage students to think critically about how data is collected and analyzed in their own projects.
- Open the floor for questions and discussion.

Key Takeaways

- Data collection methods vary widely and should be chosen based on the research question and context.
- Data discovery is a crucial step in identifying relevant and high-quality data for analysis.
- Experimental design is fundamental to testing hypotheses and establishing causality, with careful consideration of variables and control.

Resources:

Fowler, F. J. Survey Research Methods Trochim, W. M. K., & Donnelly, J. P. The Research Methods Knowledge Base Salmons, J. Doing Qualitative Research Online Shamoo, A. E., & Resnik, D. B. Responsible Conduct of Research

Lecture Outline: Importing Data and Creating Basic Graphs in Python Duration: 50 minutes

1. Introduction to Data Importing and Visualization in Python (5 minutes)

- **Objective:** Provide an overview of the importance of data importing and visualization in data analysis.
- Content:
 - Brief introduction to pandas for data manipulation and the importance of data importing.
 - Overview of Python's graphing capabilities using different libraries.
 - Outline of what will be covered: importing various file types into a pandas DataFrame, and creating basic graphs using different packages.

2. Importing Data into a Pandas DataFrame (20 minutes)

- **Objective:** Teach students how to import different file types (CSV, Excel, JSON) into a pandas DataFrame.
- Content:
 - Importing CSV Files:
 - Syntax: pd.read_csv('file_path.csv')
 - **Example:** Importing a CSV file into a DataFrame.
 - Discuss options like specifying the delimiter, handling missing values, and setting an index column.
 - Importing Excel Files:
 - **Syntax:** pd.read_excel('file_path.xlsx', sheet_name='Sheet1')
 - **Example:** Importing data from an Excel file, specifying the sheet name.
 - Handling multiple sheets, working with Excel-specific options.
 - Importing JSON Files:
 - **Syntax:** pd.read_json('file_path.json')
 - **Example:** Importing a JSON file into a DataFrame.

- Discussing the structure of JSON data (nested data) and how to handle it in pandas.
- Hands-on Practice:
 - Quick demonstration of importing different file types using sample data.
 - Encourage students to try importing a dataset of their choice on their own systems.

3. Creating Basic Graphs Using Matplotlib (10 minutes)

- **Objective:** Introduce Matplotlib for creating basic graphs.
- Content:
 - Introduction to Matplotlib:
 - Overview of Matplotlib as a versatile plotting library.
 - **Syntax:** Importing Matplotlib: import matplotlib.pyplot as plt
 - Creating Basic Plots:
 - Line Plot: plt.plot(x, y)
 - Bar Chart: plt.bar(x, y)
 - Histogram: plt.hist(data)
 - Customizing Plots:
 - Adding titles, labels, legends, and customizing colors.

Syntax Example:

plt.title('Sample Title') plt.xlabel('X-axis Label') plt.ylabel('Y-axis Label')

٠

• Practice Example:

 Create a line plot and a bar chart using sample data, and demonstrate basic customization options.

4. Creating Graphs Using Seaborn (8 minutes)

- **Objective:** Introduce Seaborn for creating more advanced, aesthetically pleasing plots.
- Content:

• Introduction to Seaborn:

- Overview of Seaborn as a higher-level interface for Matplotlib, focused on statistical plots.
- **Syntax:** Importing Seaborn: import seaborn as sns
- Creating Basic Plots:
 - Scatter Plot: sns.scatterplot(x='column_name', y='column_name', data=df)
 - Box Plot: sns.boxplot(x='column_name', y='column_name', data=df)
 - Pair Plot: sns.pairplot(df)
- Customization and Aesthetics:
 - Using Seaborn's built-in themes and color palettes.
 - Customizing plots with additional options, such as adding hue for categorical variables.
- Practice Example:
 - Create a scatter plot and a box plot using sample data, and demonstrate customization options.

5. Creating Graphs Using Plotly (10 minutes)

- **Objective:** Introduce Plotly for creating interactive plots.
- Content:
 - Introduction to Plotly:
 - Overview of Plotly as a library for creating interactive, web-based plots.
 - Syntax: Importing Plotly: import plotly.express as px
 - Creating Basic Interactive Plots:
 - Scatter Plot: px.scatter(df, x='column_name', y='column_name')
 - Bar Chart: px.bar(df, x='column_name', y='column_name')
 - Line Chart: px.line(df, x='column_name', y='column_name')
 - Interactivity Features:
 - Demonstrating hover, zoom, and export options in Plotly plots.
 - Discussing how these features can enhance data exploration and presentation.
 - Practice Example:
 - Create an interactive scatter plot and a bar chart using sample data, showing how to interact with the plots.

6. Conclusion & Q&A (5 minutes)

- **Objective:** Summarize key points and address any questions.
- Content:
 - Recap of how to import different file types into pandas and the basics of creating graphs using Matplotlib, Seaborn, and Plotly.
 - Highlight the strengths of each graphing library and when to use them.
 - Encourage students to explore further by creating plots with their own datasets.
 - Open the floor for questions and discussion.

Key Takeaways

- Importing data from different file types into pandas is fundamental for data analysis in Python.
- Matplotlib, Seaborn, and Plotly each offer unique advantages for creating visualizations, from basic static plots to advanced interactive graphs.
- Understanding the basics of these tools is essential for effectively analyzing and presenting data.

Resources:

Python Graph Gallery <u>https://python-graph-gallery.com/</u> Plotting Graphs in Python <u>https://www.geeksforgeeks.org/graph-plotting-in-python-set-1/</u> Plotly Graphing Gallery <u>https://plotly.com/python/</u> Python Graphs <u>https://www.tutorialspoint.com/python_data_structure/python_graphs.htm</u>

Importing from Sheets requires quite a bit extra work, so I'm including a general example here if you need it.

To import a Google Sheets file into Python, you can use the `gspread` library along with `oauth2client` for authentication. Here's a step-by-step guide to help you get started:

```
    **Install the required libraries**:
    ``bash
    pip install gspread oauth2client
```

- 2. **Set up Google Cloud Console**:
 - Log in to Google Cloud Console.
 - Create a new project or select an existing one.
 - Enable the Google Sheets API and Google Drive API.
 - Navigate to "APIs and Services" > "Credentials" to set up a service account.
 - Create a service account and download the JSON key file.
- 3. **Share your Google Sheet**:
 - Open your Google Sheet.
 - Click the "Share" button and add the service account email address found in the JSON key file.
 - Grant Editor permissions.

4. **Authenticate and import the Google Sheets file**:

```
```python
import gspread
from oauth2client.service account import ServiceAccountCredentials
```

# Define the scope and credentials

```
scope = ['https://www.googleapis.com/auth/spreadsheets', 'https://www.googleapis.com/auth/drive']
credentials = ServiceAccountCredentials.from_json_keyfile_name('path/to/your/credentials.json',
scope)
```

```
Authorize and open the Google Sheets file
client = gspread.authorize(credentials)
sheet = client.open('Your_Sheet_Name').sheet1
```

```
Get all values from the sheet
data = sheet.get_all_values()
```

```
Print the first few rows
for row in data[:5]:
 print(row)
...
```

Replace `'path/to/your/credentials.json'` with the path to your JSON key file and `'Your\_Sheet\_Name'` with the name of your Google Sheet.

This should help you get started with importing Google Sheets files into Python.