
DSA 610 Redesign, Lecture 3 Outline 
 
Lecture Outline: Basic Database Types and the Conceptual Model 
Duration: 50 minutes 

 
1. Introduction to Database Types (5 minutes) 

• Objective: Provide an overview of the variety of database types and their significance in data 
management. 

• Content: 
o Brief introduction to databases and their role in storing, organizing, and managing data. 
o Overview of relational and non-relational databases. 
o Introduction to the concept of the "conceptual model" in database design. 

 
2. Relational Databases and SQL (10 minutes) 

• Objective: Explain the basics of relational databases and the SQL query language. 
• Content: 

o Relational Databases: 
▪ Definition: A database structured to recognize relations among stored items of 

information. 
▪ Structure: Tables, rows, and columns (schema-based). 
▪ Key Concepts: Primary keys, foreign keys, relationships (one-to-many, many-to-

many). 
o SQL (Structured Query Language): 

▪ Definition: The standard language for managing and manipulating relational 
databases. 

▪ Basic SQL Operations: 
▪ SELECT: Querying data from tables. 
▪ INSERT: Adding new records. 
▪ UPDATE: Modifying existing records. 
▪ DELETE: Removing records. 

▪ Example: Simple SQL query to select data from a table. 

 
3. NoSQL Databases (10 minutes) 

• Objective: Introduce NoSQL databases, including their types and use cases. 
• Content: 

o Definition of NoSQL: 
▪ A category of database management systems that do not use the traditional 

relational database model. 
▪ Advantages: Flexibility, scalability, handling unstructured data. 

o Types of NoSQL Databases: 
▪ Document Stores (e.g., MongoDB): 

▪ Store data in JSON-like documents. 
▪ Ideal for hierarchical data structures. 

▪ Key-Value Stores (e.g., Redis): 
▪ Simple data storage in key-value pairs. 
▪ High-performance use cases like caching. 

▪ Column-Family Stores (e.g., Cassandra): 
▪ Store data in columns rather than rows. 



▪ Suitable for large-scale distributed systems. 
▪ Graph Databases (e.g., Neo4j): 

▪ Designed to represent data as interconnected nodes and edges. 
▪ Ideal for relationship-heavy data like social networks. 

o Comparison with SQL Databases: 
▪ Schema flexibility, horizontal scalability, and eventual consistency. 

 
4. XML and JSON in Databases (10 minutes) 

• Objective: Discuss the role of XML and JSON as data formats and their integration with 
databases. 

• Content: 
o XML (Extensible Markup Language): 

▪ Definition: A markup language for encoding documents in a format that is both 
human-readable and machine-readable. 

▪ Usage in Databases: 
▪ Commonly used in document stores and as a format for data 

interchange. 
▪ Can be stored and queried directly in certain database systems. 

▪ Example: Sample XML structure and discussion on storing it in a database. 
o JSON (JavaScript Object Notation): 

▪ Definition: A lightweight data-interchange format that is easy for humans to 
read and write and easy for machines to parse and generate. 

▪ Usage in Databases: 
▪ Widely used in document stores like MongoDB. 
▪ Increasingly supported in relational databases (e.g., PostgreSQL). 

▪ Example: Sample JSON structure and discussion on its advantages over XML in 
certain use cases. 

 
5. Object-Oriented and Graph Databases (10 minutes) 

• Objective: Explore object-oriented and graph databases, their features, and use cases. 
• Content: 

o Object-Oriented Databases: 
▪ Definition: Databases that integrate object-oriented programming principles, 

storing data as objects. 
▪ Key Concepts: Inheritance, encapsulation, polymorphism. 
▪ Usage: Often used in applications where data and logic are tightly integrated. 
▪ Example: Discuss how an object-oriented database stores and manages complex 

data types. 
o Graph Databases: 

▪ Definition: Databases designed to represent and store data in the form of 
graphs (nodes and edges). 

▪ Key Concepts: Nodes (entities), edges (relationships), properties (attributes of 
nodes/edges). 

▪ Use Cases: Social networks, recommendation engines, fraud detection. 
▪ Example: Overview of a simple graph structure representing a social network 

and how queries are executed in graph databases. 

 
6. Conceptual Modeling in Database Design (5 minutes) 



• Objective: Introduce the concept of the conceptual model in database design and its 
importance. 

• Content: 
o Definition of Conceptual Model: 

▪ An abstract framework that describes the structure of a database without 
focusing on physical implementation details. 

o Importance: 
▪ Helps in visualizing the data structure and relationships before implementation. 
▪ Guides the logical and physical design of the database. 

o Components of Conceptual Models: 
▪ Entities: Key objects or concepts within the domain (e.g., Customer, Product). 
▪ Attributes: Properties of entities (e.g., Customer Name, Product Price). 
▪ Relationships: Connections between entities (e.g., Customer "purchases" 

Product). 
o Tools: Mention of Entity-Relationship Diagrams (ERDs) as a way to represent conceptual 

models. 

 
 

7. Conclusion & Q&A (5 minutes) 
• Objective: Summarize key points and address any questions. 
• Content: 

o Recap of different database types, their use cases, and the importance of conceptual 
modeling. 

o Highlight the importance of choosing the right database type based on the specific 
needs of a project. 

o Encourage students to explore databases hands-on, experimenting with different types 
and querying methods. 

o Open the floor for questions and discussion. 

 
Key Takeaways 



• Different database types (relational, NoSQL, object-oriented, graph) cater to different data needs 
and use cases. 

• SQL databases are structured and ideal for transactional data, while NoSQL databases offer 
flexibility for unstructured or semi-structured data. 

• XML and JSON are common data interchange formats that integrate with various database 
systems. 

• Conceptual modeling is a crucial step in designing effective databases that align with business 
requirements. 

 
Resources: 
W3Schools: https://www.w3schools.com/sql/ https://www.w3schools.com/databases/ 
Databases and NoSQL tutorials: https://www.tutorialspoint.com/database_tutorial/ 
Database Normalization: 
https://www.youtube.com/watch?v=GFQaEYEc8_8&pp=ygUgRGF0YWJhc2Ugbm9ybWFsaXphdGlvbiBleH
BsYWluZWQ%3D 
Entity-Relationship Diagrams: https://www.lucidchart.com/pages/er-diagrams 
https://www.youtube.com/watch?v=WuZt1X3kztI&pp=ygUkRW50aXR5LVJlbGF0aW9uc2hpcCBkaWFncm
FtIHR1dG9yaWFs  https://medium.com/@elizabethskachkov/entity-relationship-diagrams-an-
explanation-1c478499b77f  
UML Class Diagrams: 
https://www.youtube.com/watch?v=ao1ESgIy2Ws&pp=ygUSVU1MIENsYXNzIERpYWdyYW1z 
Document Databases: https://www.mongodb.com/university 
 
Lecture Outline: Data Structures Essential for Data Analysis 
Duration: 50 minutes 

 
1. Introduction to Data Structures (5 minutes) 

• Objective: Provide an overview of the importance of data structures in data analysis. 
• Content: 

o Define data structures and their role in storing and organizing data for analysis. 
o Brief introduction to the types of data structures commonly used in data analysis: lists, 

dictionaries, arrays, dataframes, etc. 
o Overview of the differences between basic and complex data structures. 

 
2. Lists and Tuples (8 minutes) 

• Objective: Explain the basic data structures: lists and tuples, and their use cases in data analysis. 
• Content: 

o Lists: 
▪ Definition: Ordered, mutable collections of items. 
▪ Syntax Example: my_list = [1, 2, 3, 4] 
▪ Use Cases: Storing sequences of data, iterating over elements. 
▪ Operations: Adding, removing, sorting elements. 

o Tuples: 
▪ Definition: Ordered, immutable collections of items. 
▪ Syntax Example: my_tuple = (1, 2, 3, 4) 
▪ Use Cases: Storing fixed data, multiple return values from functions. 
▪ Comparison with Lists: 

https://www.w3schools.com/sql/
https://www.w3schools.com/databases/
https://www.tutorialspoint.com/database_tutorial/
https://www.youtube.com/watch?v=GFQaEYEc8_8&pp=ygUgRGF0YWJhc2Ugbm9ybWFsaXphdGlvbiBleHBsYWluZWQ%3D
https://www.youtube.com/watch?v=GFQaEYEc8_8&pp=ygUgRGF0YWJhc2Ugbm9ybWFsaXphdGlvbiBleHBsYWluZWQ%3D
https://www.lucidchart.com/pages/er-diagrams
https://www.youtube.com/watch?v=WuZt1X3kztI&pp=ygUkRW50aXR5LVJlbGF0aW9uc2hpcCBkaWFncmFtIHR1dG9yaWFs
https://www.youtube.com/watch?v=WuZt1X3kztI&pp=ygUkRW50aXR5LVJlbGF0aW9uc2hpcCBkaWFncmFtIHR1dG9yaWFs
https://medium.com/@elizabethskachkov/entity-relationship-diagrams-an-explanation-1c478499b77f
https://medium.com/@elizabethskachkov/entity-relationship-diagrams-an-explanation-1c478499b77f
https://www.youtube.com/watch?v=ao1ESgIy2Ws&pp=ygUSVU1MIENsYXNzIERpYWdyYW1z
https://www.mongodb.com/university


▪ Lists are mutable (can change), while tuples are immutable (cannot 
change). 

▪ Tuples can be faster and are often used for data that shouldn’t be 
modified. 

o Example Use Case: 
▪ Using a list to store a series of data points, and using a tuple to store constant 

values (like configuration settings). 

 
3. Dictionaries (10 minutes) 

• Objective: Introduce dictionaries, their structure, and how they are used in data analysis. 
• Content: 

o Definition: Collections of key-value pairs, where keys are unique identifiers for their 
associated values. 

o Syntax Example: my_dict = {'key1': 'value1', 'key2': 'value2'} 
o Use Cases: 

▪ Storing and accessing data by key (e.g., mapping IDs to user data). 
▪ Fast lookups and efficient management of data that doesn’t require order. 

o Operations: 
▪ Adding, updating, and removing key-value pairs. 
▪ Iterating over keys, values, or key-value pairs. 
▪ Handling missing keys with methods like .get() or using default dictionaries. 

o Example Use Case: 
▪ Using a dictionary to store and retrieve user information by user ID. 

 
4. Arrays (10 minutes) 

• Objective: Explain the role of arrays in data analysis, particularly when dealing with numerical 
data. 

• Content: 
o Definition: Fixed-size, homogeneous collections of elements (all elements are of the 

same data type). 
o In Python: 

▪ Often used through libraries like NumPy for numerical computations. 
▪ Syntax Example: import numpy as np; my_array = np.array([1, 2, 3, 4]) 

o Use Cases: 
▪ Efficient storage and computation of large datasets, especially in mathematical 

operations and algorithms. 
▪ Commonly used for matrix operations, statistical calculations, and machine 

learning. 
o Comparison with Lists: 

▪ Arrays are more memory-efficient and provide faster computations for large 
numerical datasets. 

▪ Unlike lists, arrays require all elements to be of the same type. 
o Example Use Case: 

▪ Using an array to perform element-wise mathematical operations or to store 
and manipulate a dataset for machine learning. 

 
5. DataFrames (12 minutes) 

• Objective: Explore the DataFrame structure, its features, and why it is essential in data analysis. 



• Content: 
o Definition: A two-dimensional, size-mutable, and potentially heterogeneous tabular data 

structure with labeled axes (rows and columns). 
o In Python: 

▪ Primarily used through the pandas library. 
▪ Syntax Example: import pandas as pd; my_dataframe = 

pd.DataFrame({'Column1': [1, 2], 'Column2': [3, 4]}) 
o Use Cases: 

▪ Storing, manipulating, and analyzing large datasets in a tabular format. 
▪ Handling missing data, merging, grouping, and reshaping data. 
▪ Widely used for data cleaning, preprocessing, and exploratory data analysis 

(EDA). 
o Operations: 

▪ Accessing data using labels (df['Column']), slicing rows and columns, and 
performing aggregate operations. 

▪ Merging and joining multiple DataFrames. 
▪ Applying functions across rows or columns with .apply(). 

o Comparison with Arrays and Dictionaries: 
▪ DataFrames provide more functionality and flexibility for data manipulation 

compared to arrays and dictionaries. 
▪ Like arrays, DataFrames are optimized for numerical operations but also support 

complex data manipulation. 
o Example Use Case: 

▪ Loading a CSV file into a DataFrame, cleaning the data, and performing 
exploratory analysis. 

 
6. Comparison and Choosing the Right Data Structure (5 minutes) 

• Objective: Compare the different data structures and provide guidance on when to use each. 
• Content: 

o Lists vs. Arrays: 
▪ Use lists for simple collections of data that may include different data types. 
▪ Use arrays when working with numerical data and need efficient computation. 

o Dictionaries vs. DataFrames: 
▪ Use dictionaries for key-value pair storage, especially when quick lookups by key 

are needed. 
▪ Use DataFrames when working with structured data in rows and columns, 

especially for data analysis and manipulation. 
o Choosing the Right Structure: 

▪ Consider the nature of the data (size, type, operations needed). 
▪ Performance considerations (memory usage, speed). 
▪ Flexibility vs. specificity: DataFrames are versatile, while arrays offer optimized 

performance for numerical data. 

 
7. Conclusion & Q&A (5 minutes) 

• Objective: Summarize the key points and address any remaining questions. 
• Content: 

o Recap of the main data structures: lists, tuples, dictionaries, arrays, and DataFrames. 



o Highlight the importance of choosing the right data structure for efficient and effective 
data analysis. 

o Encourage students to practice working with these structures through exercises and 
projects. 

o Open the floor for questions and discussion. 

 
Key Takeaways 

• Different data structures (lists, tuples, dictionaries, arrays, DataFrames) are essential tools in 
data analysis, each with unique characteristics and use cases. 

• Understanding the differences and similarities between these structures is crucial for efficient 
data manipulation and analysis. 

• The choice of data structure depends on the type of data, the operations needed, and the 
specific analysis context. 

 
Resources: 
Python Tutorials: https://docs.python.org/3/tutorial/  https://www.w3schools.com/python/ 
NumPy's official quickstart guide: https://numpy.org/doc/stable/user/absolute_beginners.html 
Pandas 10-minute guide: https://pandas.pydata.org/docs/user_guide/10min.html  
 
Lecture Outline: Data Types in Python and Appropriate Graphs for Data Visualization 
Duration: 50 minutes 

 
1. Introduction to Data Types in Python (5 minutes) 

• Objective: Provide an overview of Python data types and their significance in data analysis. 
• Content: 

o Brief introduction to data types as a fundamental concept in programming. 
o Overview of Python's basic data types and their role in data analysis. 
o Explanation of why understanding data types is important for choosing the right 

visualizations. 

 
2. Basic Python Data Types (15 minutes) 

• Objective: Explain the basic data types in Python and their characteristics. 
• Content: 

o Numeric Types: 
▪ Integers: Whole numbers (e.g., int_var = 5). 
▪ Floats: Numbers with decimals (e.g., float_var = 3.14). 
▪ Use Cases: Storing quantitative data, performing mathematical operations. 

o Strings: 
▪ Definition: Sequence of characters (e.g., str_var = "Hello"). 
▪ Use Cases: Storing categorical data, text processing, labels in graphs. 

o Booleans: 
▪ Definition: True/False values (e.g., bool_var = True). 
▪ Use Cases: Conditional operations, binary categorizations (e.g., yes/no, 

success/failure). 
o Lists: 

▪ Definition: Ordered, mutable collections of items (e.g., list_var = [1, 2, 3]). 
▪ Use Cases: Storing sequences of data that can be of mixed types. 

o Tuples: 

https://docs.python.org/3/tutorial/
https://www.w3schools.com/python/
https://numpy.org/doc/stable/user/absolute_beginners.html
https://pandas.pydata.org/docs/user_guide/10min.html


▪ Definition: Ordered, immutable collections of items (e.g., tuple_var = (1, 2, 3)). 
▪ Use Cases: Storing fixed data that shouldn’t be modified. 

o Dictionaries: 
▪ Definition: Collections of key-value pairs (e.g., dict_var = {'key1': 'value1'}). 
▪ Use Cases: Storing and accessing data by key, often used for mapping. 

o Example Use Case: 
▪ Discuss how to choose the correct data type based on the nature of the data 

(e.g., using floats for continuous numerical data). 

 
3. Appropriate Graphs for Individual Variables (10 minutes) 

• Objective: Discuss appropriate graphs for visualizing individual variables based on their data 
types. 

• Content: 
o Numeric Data: 

▪ Histograms: 
▪ Ideal for visualizing the distribution of a single numeric variable. 
▪ Example: Plotting the distribution of heights in a population. 

▪ Box Plots: 
▪ Useful for showing the spread, quartiles, and outliers of a numeric 

variable. 
▪ Example: Visualizing the distribution of exam scores. 

▪ Line Plots: 
▪ Suitable for time series data or showing trends over continuous 

intervals. 
▪ Example: Plotting monthly sales over a year. 

o Categorical Data: 
▪ Bar Charts: 

▪ Best for comparing the frequency of different categories. 
▪ Example: Visualizing the number of students in each grade category. 

▪ Pie Charts: 
▪ Used to show the proportion of categories within a whole. 
▪ Example: Showing the market share of different companies. 

▪ Count Plots (Seaborn): 
▪ A variation of bar charts to display counts of categorical variables. 
▪ Example: Counting occurrences of different job roles in a dataset. 

o Boolean Data: 
▪ Bar Charts: 

▪ Effective for binary comparisons. 
▪ Example: Comparing the number of pass/fail results. 

 
4. Visualizing Combinations of Variables (10 minutes) 

• Objective: Introduce graphs for visualizing relationships between multiple variables. 
• Content: 

o Numeric vs. Numeric: 
▪ Scatter Plots: 

▪ Ideal for visualizing the relationship between two numeric variables. 
▪ Example: Plotting the relationship between study hours and test scores. 

▪ Heatmaps: 



▪ Used for visualizing correlation matrices or showing the intensity of 
relationships. 

▪ Example: Visualizing the correlation between different financial metrics. 
o Categorical vs. Numeric: 

▪ Box Plots: 
▪ Useful for comparing the distribution of a numeric variable across 

different categories. 
▪ Example: Comparing salaries across different job roles. 

▪ Violin Plots: 
▪ Similar to box plots but also show the density of the data. 
▪ Example: Visualizing the distribution of customer satisfaction scores 

across regions. 
▪ Bar Charts (Grouped/Stacked): 

▪ Show comparisons of categorical data with associated numeric values. 
▪ Example: Comparing average scores of different departments in a 

company. 
o Categorical vs. Categorical: 

▪ Stacked Bar Charts: 
▪ Ideal for showing the relationship between two categorical variables. 
▪ Example: Comparing gender distribution across different job roles. 

▪ Mosaic Plots: 
▪ Useful for showing proportions of two categorical variables. 
▪ Example: Visualizing the proportion of product categories sold across 

different regions. 

 
5. Selecting Appropriate Graphs for Complex Data Analysis (10 minutes) 

• Objective: Discuss strategies for choosing the right visualization for complex data analysis 
involving multiple variables. 

• Content: 
o Combining Multiple Variables: 

▪ Pair Plots (Seaborn): 
▪ Useful for exploring relationships between multiple numeric variables. 
▪ Example: Pair plot for visualizing relationships between age, income, 

and spending score. 
▪ Facet Grids: 

▪ Used to plot multiple graphs across different subsets of data. 
▪ Example: Visualizing income distribution across different age groups and 

genders. 
▪ Parallel Coordinates Plots: 

▪ Good for visualizing multidimensional data and spotting trends. 
▪ Example: Comparing performance metrics across different departments. 

o Choosing the Right Graph: 
▪ Consider the nature of the data (e.g., type, size, complexity). 
▪ Think about the story you want to tell and what the data reveals. 
▪ Ensure clarity and avoid clutter by choosing the most straightforward 

visualization. 

 
6. Conclusion & Q&A (5 minutes) 



• Objective: Summarize key points and address any remaining questions. 
• Content: 

o Recap the importance of understanding Python data types and selecting the appropriate 
graph for different types of data. 

o Highlight the importance of matching the data structure with the correct visualization 
technique for effective communication of insights. 

o Encourage students to experiment with different graphs using their datasets. 
o Open the floor for questions and discussion. 

 
Key Takeaways 

• Different data types in Python (numeric, categorical, boolean) require different approaches to 
visualization. 

• Understanding the characteristics of your data helps in selecting the most appropriate graph to 
convey insights effectively. 

• Combining variables and selecting advanced visualizations can uncover deeper relationships and 
trends in the data. 

 
 
Resources: 
Data to Viz: https://www.data-to-viz.com/ 
The Data Visualization Catalog: https://datavizcatalogue.com/ 
Chart Chooser: https://www.highcharts.com/chartchooser/ 
 

https://www.data-to-viz.com/
https://datavizcatalogue.com/
https://www.highcharts.com/chartchooser/

