DSA 610 Redesign, Lecture 3 Outline

Lecture Outline: Basic Database Types and the Conceptual Model
Duration: 50 minutes

1. Introduction to Database Types (5 minutes)
e Objective: Provide an overview of the variety of database types and their significance in data
management.
e Content:
o Brief introduction to databases and their role in storing, organizing, and managing data.
o Overview of relational and non-relational databases.
o Introduction to the concept of the "conceptual model" in database design.

2. Relational Databases and SQL (10 minutes)
e Objective: Explain the basics of relational databases and the SQL query language.
e Content:
o Relational Databases:
» Definition: A database structured to recognize relations among stored items of
information.
= Structure: Tables, rows, and columns (schema-based).
= Key Concepts: Primary keys, foreign keys, relationships (one-to-many, many-to-
many).
o SQL (Structured Query Language):
» Definition: The standard language for managing and manipulating relational
databases.
= Basic SQL Operations:
= SELECT: Querying data from tables.
»= INSERT: Adding new records.
= UPDATE: Modifying existing records.
= DELETE: Removing records.
= Example: Simple SQL query to select data from a table.

3. NoSQL Databases (10 minutes)
e Objective: Introduce NoSQL databases, including their types and use cases.
e Content:
o Definition of NoSQL:
» A category of database management systems that do not use the traditional
relational database model.
»= Advantages: Flexibility, scalability, handling unstructured data.
o Types of NoSQL Databases:
* Document Stores (e.g., MongoDB):
» Store data in JSON-like documents.
= Ideal for hierarchical data structures.
»= Key-Value Stores (e.g., Redis):
= Simple data storage in key-value pairs.
»= High-performance use cases like caching.
* Column-Family Stores (e.g., Cassandra):
» Store data in columns rather than rows.

= Suitable for large-scale distributed systems.
* Graph Databases (e.g., Neo4j):
»= Designed to represent data as interconnected nodes and edges.
» |deal for relationship-heavy data like social networks.
o Comparison with SQL Databases:
» Schema flexibility, horizontal scalability, and eventual consistency.

4. XML and JSON in Databases (10 minutes)
e Objective: Discuss the role of XML and JSON as data formats and their integration with
databases.
e Content:
o XML (Extensible Markup Language):
» Definition: A markup language for encoding documents in a format that is both
human-readable and machine-readable.
*= Usage in Databases:
* Commonly used in document stores and as a format for data
interchange.
* Can be stored and queried directly in certain database systems.
= Example: Sample XML structure and discussion on storing it in a database.
o JSON (JavaScript Object Notation):
» Definition: A lightweight data-interchange format that is easy for humans to
read and write and easy for machines to parse and generate.
*= Usage in Databases:
= Widely used in document stores like MongoDB.
* Increasingly supported in relational databases (e.g., PostgreSQL).
= Example: Sample JSON structure and discussion on its advantages over XML in
certain use cases.

5. Object-Oriented and Graph Databases (10 minutes)
e Objective: Explore object-oriented and graph databases, their features, and use cases.
e Content:
o Object-Oriented Databases:
= Definition: Databases that integrate object-oriented programming principles,
storing data as objects.
= Key Concepts: Inheritance, encapsulation, polymorphism.
» Usage: Often used in applications where data and logic are tightly integrated.
= Example: Discuss how an object-oriented database stores and manages complex
data types.
o Graph Databases:
» Definition: Databases designed to represent and store data in the form of
graphs (nodes and edges).
= Key Concepts: Nodes (entities), edges (relationships), properties (attributes of
nodes/edges).
» Use Cases: Social networks, recommendation engines, fraud detection.
= Example: Overview of a simple graph structure representing a social network
and how queries are executed in graph databases.

6. Conceptual Modeling in Database Design (5 minutes)

e Objective: Introduce the concept of the conceptual model in database design and its
importance.
e Content:
o Definition of Conceptual Model:
= An abstract framework that describes the structure of a database without
focusing on physical implementation details.
o Importance:
= Helps in visualizing the data structure and relationships before implementation.
= Guides the logical and physical design of the database.
o Components of Conceptual Models:
= Entities: Key objects or concepts within the domain (e.g., Customer, Product).
= Attributes: Properties of entities (e.g., Customer Name, Product Price).
= Relationships: Connections between entities (e.g., Customer "purchases"
Product).
o Tools: Mention of Entity-Relationship Diagrams (ERDs) as a way to represent conceptual
models.

+ Phone number + Price + Address
+ Customer number —'—O€ + Type H + MName
+ Mame + Manufacturer

+ Address

1

+ Staff number ———0O€& +F Product

+ Marme + Date
+ Sum tatal

7. Conclusion & Q&A (5 minutes)
e Objective: Summarize key points and address any questions.
e Content:
o Recap of different database types, their use cases, and the importance of conceptual
modeling.
o Highlight the importance of choosing the right database type based on the specific
needs of a project.
o Encourage students to explore databases hands-on, experimenting with different types
and querying methods.
o Open the floor for questions and discussion.

Key Takeaways

e Different database types (relational, NoSQL, object-oriented, graph) cater to different data needs
and use cases.

e SQL databases are structured and ideal for transactional data, while NoSQL databases offer
flexibility for unstructured or semi-structured data.

e XML and JSON are common data interchange formats that integrate with various database
systems.

e Conceptual modeling is a crucial step in designing effective databases that align with business
requirements.

Resources:

W3Schools: https://www.w3schools.com/sql/ https://www.w3schools.com/databases/

Databases and NoSQL tutorials: https://www.tutorialspoint.com/database tutorial/

Database Normalization:

https://www.youtube.com/watch?v=GFQaEYEc8 8&pp=ygUgRGFOYWJhc2Ugbm9ybWFsaXphdGlvbiBleH
BsYWIuZWQ%3D

Entity-Relationship Diagrams: https://www.lucidchart.com/pages/er-diagrams
https://www.youtube.com/watch?v=WuzZt1X3kzt|&pp=ygUkRW50aXR5LVIJIbGFOaW9uc2hpcCBkaWFncm
FtIHR1dG9yaWFs https://medium.com/@elizabethskachkov/entity-relationship-diagrams-an-
explanation-1c478499b77f

UML Class Diagrams:
https://www.youtube.com/watch?v=a01ESgly2Ws&pp=ygUSVUIMIENsYXNzIERpYWdyYW1z

Document Databases: https://www.mongodb.com/university

Lecture Outline: Data Structures Essential for Data Analysis
Duration: 50 minutes

1. Introduction to Data Structures (5 minutes)
e Objective: Provide an overview of the importance of data structures in data analysis.
e Content:
o Define data structures and their role in storing and organizing data for analysis.
o Brief introduction to the types of data structures commonly used in data analysis: lists,
dictionaries, arrays, dataframes, etc.
o Overview of the differences between basic and complex data structures.

2. Lists and Tuples (8 minutes)
e Objective: Explain the basic data structures: lists and tuples, and their use cases in data analysis.
e Content:
o Lists:

= Definition: Ordered, mutable collections of items.
*= Syntax Example: my_list =[1, 2, 3, 4]
»= Use Cases: Storing sequences of data, iterating over elements.
= Operations: Adding, removing, sorting elements.

= Definition: Ordered, immutable collections of items.

»= Syntax Example: my_tuple = (1, 2, 3, 4)

= Use Cases: Storing fixed data, multiple return values from functions.
= Comparison with Lists:

https://www.w3schools.com/sql/
https://www.w3schools.com/databases/
https://www.tutorialspoint.com/database_tutorial/
https://www.youtube.com/watch?v=GFQaEYEc8_8&pp=ygUgRGF0YWJhc2Ugbm9ybWFsaXphdGlvbiBleHBsYWluZWQ%3D
https://www.youtube.com/watch?v=GFQaEYEc8_8&pp=ygUgRGF0YWJhc2Ugbm9ybWFsaXphdGlvbiBleHBsYWluZWQ%3D
https://www.lucidchart.com/pages/er-diagrams
https://www.youtube.com/watch?v=WuZt1X3kztI&pp=ygUkRW50aXR5LVJlbGF0aW9uc2hpcCBkaWFncmFtIHR1dG9yaWFs
https://www.youtube.com/watch?v=WuZt1X3kztI&pp=ygUkRW50aXR5LVJlbGF0aW9uc2hpcCBkaWFncmFtIHR1dG9yaWFs
https://medium.com/@elizabethskachkov/entity-relationship-diagrams-an-explanation-1c478499b77f
https://medium.com/@elizabethskachkov/entity-relationship-diagrams-an-explanation-1c478499b77f
https://www.youtube.com/watch?v=ao1ESgIy2Ws&pp=ygUSVU1MIENsYXNzIERpYWdyYW1z
https://www.mongodb.com/university

o

= Lists are mutable (can change), while tuples are immutable (cannot
change).
= Tuples can be faster and are often used for data that shouldn’t be
modified.
Example Use Case:
= Using a list to store a series of data points, and using a tuple to store constant
values (like configuration settings).

3. Dictionaries (10 minutes)
e Objective: Introduce dictionaries, their structure, and how they are used in data analysis.
e Content:

o

Definition: Collections of key-value pairs, where keys are unique identifiers for their
associated values.
Syntax Example: my_dict = {'key1": 'valuel’, 'key2": 'value2'}
Use Cases:

» Storing and accessing data by key (e.g., mapping IDs to user data).

» Fast lookups and efficient management of data that doesn’t require order.
Operations:

» Adding, updating, and removing key-value pairs.

* [terating over keys, values, or key-value pairs.

* Handling missing keys with methods like .get() or using default dictionaries.
Example Use Case:

» Using a dictionary to store and retrieve user information by user ID.

4. Arrays (10 minutes)
e Objective: Explain the role of arrays in data analysis, particularly when dealing with numerical

data.
e Content:
o Definition: Fixed-size, homogeneous collections of elements (all elements are of the
same data type).
o InPython:
» Often used through libraries like NumPy for numerical computations.
»= Syntax Example: import numpy as np; my_array = np.array([1, 2, 3, 4])
o Use Cases:
» Efficient storage and computation of large datasets, especially in mathematical
operations and algorithms.
= Commonly used for matrix operations, statistical calculations, and machine
learning.
o Comparison with Lists:
= Arrays are more memory-efficient and provide faster computations for large
numerical datasets.
»= Unlike lists, arrays require all elements to be of the same type.
o Example Use Case:

*= Using an array to perform element-wise mathematical operations or to store
and manipulate a dataset for machine learning.

5. DataFrames (12 minutes)
e Objective: Explore the DataFrame structure, its features, and why it is essential in data analysis.

e Content:
o Definition: A two-dimensional, size-mutable, and potentially heterogeneous tabular data
structure with labeled axes (rows and columns).
o InPython:
= Primarily used through the pandas library.
= Syntax Example: import pandas as pd; my_dataframe =
pd.DataFrame({'Column1': [1, 2], 'Column2': [3, 4]})
o Use Cases:
= Storing, manipulating, and analyzing large datasets in a tabular format.
= Handling missing data, merging, grouping, and reshaping data.
= Widely used for data cleaning, preprocessing, and exploratory data analysis
(EDA).
o Operations:
» Accessing data using labels (df['Column']), slicing rows and columns, and
performing aggregate operations.
* Merging and joining multiple DataFrames.
= Applying functions across rows or columns with .apply().
o Comparison with Arrays and Dictionaries:
»= DataFrames provide more functionality and flexibility for data manipulation
compared to arrays and dictionaries.
= Like arrays, DataFrames are optimized for numerical operations but also support
complex data manipulation.
o Example Use Case:
* Loading a CSV file into a DataFrame, cleaning the data, and performing
exploratory analysis.

6. Comparison and Choosing the Right Data Structure (5 minutes)
e Objective: Compare the different data structures and provide guidance on when to use each.
e Content:
o Lists vs. Arrays:
= Use lists for simple collections of data that may include different data types.
= Use arrays when working with numerical data and need efficient computation.
o Dictionaries vs. DataFrames:
» Use dictionaries for key-value pair storage, especially when quick lookups by key
are needed.
» Use DataFrames when working with structured data in rows and columns,
especially for data analysis and manipulation.
o Choosing the Right Structure:
» Consider the nature of the data (size, type, operations needed).
» Performance considerations (memory usage, speed).
» Flexibility vs. specificity: DataFrames are versatile, while arrays offer optimized
performance for numerical data.

7. Conclusion & Q&A (5 minutes)
e Objective: Summarize the key points and address any remaining questions.
e Content:
o Recap of the main data structures: lists, tuples, dictionaries, arrays, and DataFrames.

o Highlight the importance of choosing the right data structure for efficient and effective
data analysis.

o Encourage students to practice working with these structures through exercises and
projects.

o Open the floor for questions and discussion.

Key Takeaways
o Different data structures (lists, tuples, dictionaries, arrays, DataFrames) are essential tools in
data analysis, each with unique characteristics and use cases.
¢ Understanding the differences and similarities between these structures is crucial for efficient
data manipulation and analysis.
e The choice of data structure depends on the type of data, the operations needed, and the
specific analysis context.

Resources:

Python Tutorials: https://docs.python.org/3/tutorial/ https://www.w3schools.com/python/
NumPy's official quickstart guide: https://numpy.org/doc/stable/user/absolute beginners.html
Pandas 10-minute guide: https://pandas.pydata.org/docs/user guide/10min.html

Lecture Outline: Data Types in Python and Appropriate Graphs for Data Visualization
Duration: 50 minutes

1. Introduction to Data Types in Python (5 minutes)
e Objective: Provide an overview of Python data types and their significance in data analysis.
e Content:
o Brief introduction to data types as a fundamental concept in programming.
o Overview of Python's basic data types and their role in data analysis.
o Explanation of why understanding data types is important for choosing the right
visualizations.

2. Basic Python Data Types (15 minutes)
e Objective: Explain the basic data types in Python and their characteristics.
e Content:
o Numeric Types:
* Integers: Whole numbers (e.g., int_var =5).
* Floats: Numbers with decimals (e.g., float_var = 3.14).
»= Use Cases: Storing quantitative data, performing mathematical operations.
o Strings:
» Definition: Sequence of characters (e.g., str_var = "Hello").
= Use Cases: Storing categorical data, text processing, labels in graphs.
o Booleans:
» Definition: True/False values (e.g., bool_var = True).
»= Use Cases: Conditional operations, binary categorizations (e.g., yes/no,
success/failure).
o Lists:
* Definition: Ordered, mutable collections of items (e.g., list_var =[1, 2, 3]).
= Use Cases: Storing sequences of data that can be of mixed types.
o Tuples:

https://docs.python.org/3/tutorial/
https://www.w3schools.com/python/
https://numpy.org/doc/stable/user/absolute_beginners.html
https://pandas.pydata.org/docs/user_guide/10min.html

» Definition: Ordered, immutable collections of items (e.g., tuple_var = (1, 2, 3)).
»= Use Cases: Storing fixed data that shouldn’t be modified.
o Dictionaries:
» Definition: Collections of key-value pairs (e.g., dict_var = {'key1': 'valuel'}).
= Use Cases: Storing and accessing data by key, often used for mapping.
o Example Use Case:
= Discuss how to choose the correct data type based on the nature of the data
(e.g., using floats for continuous numerical data).

3. Appropriate Graphs for Individual Variables (10 minutes)
e Objective: Discuss appropriate graphs for visualizing individual variables based on their data
types.
e Content:
o Numeric Data:
= Histograms:
» |deal for visualizing the distribution of a single numeric variable.
= Example: Plotting the distribution of heights in a population.
= Box Plots:
= Useful for showing the spread, quartiles, and outliers of a numeric
variable.
= Example: Visualizing the distribution of exam scores.
* Line Plots:
= Suitable for time series data or showing trends over continuous
intervals.
= Example: Plotting monthly sales over a year.
o Categorical Data:
= Bar Charts:
= Best for comparing the frequency of different categories.
= Example: Visualizing the number of students in each grade category.
*= Pie Charts:
» Used to show the proportion of categories within a whole.
» Example: Showing the market share of different companies.
*= Count Plots (Seaborn):
= Avariation of bar charts to display counts of categorical variables.
= Example: Counting occurrences of different job roles in a dataset.
o Boolean Data:
= Bar Charts:
= Effective for binary comparisons.
= Example: Comparing the number of pass/fail results.

4. Visualizing Combinations of Variables (10 minutes)
e Objective: Introduce graphs for visualizing relationships between multiple variables.
e Content:
o Numeric vs. Numeric:
» Scatter Plots:
» |deal for visualizing the relationship between two numeric variables.
= Example: Plotting the relationship between study hours and test scores.
= Heatmaps:

»= Used for visualizing correlation matrices or showing the intensity of
relationships.
= Example: Visualizing the correlation between different financial metrics.
o Categorical vs. Numeric:
= Box Plots:
= Useful for comparing the distribution of a numeric variable across
different categories.
= Example: Comparing salaries across different job roles.
* Violin Plots:
= Similar to box plots but also show the density of the data.
= Example: Visualizing the distribution of customer satisfaction scores
across regions.
*= Bar Charts (Grouped/Stacked):
= Show comparisons of categorical data with associated numeric values.
= Example: Comparing average scores of different departments in a
company.
o Categorical vs. Categorical:
= Stacked Bar Charts:
» |deal for showing the relationship between two categorical variables.
= Example: Comparing gender distribution across different job roles.
= Mosaic Plots:
» Useful for showing proportions of two categorical variables.
= Example: Visualizing the proportion of product categories sold across
different regions.

5. Selecting Appropriate Graphs for Complex Data Analysis (10 minutes)
e Objective: Discuss strategies for choosing the right visualization for complex data analysis
involving multiple variables.
e Content:
o Combining Multiple Variables:

* Pair Plots (Seaborn):
= Useful for exploring relationships between multiple numeric variables.
= Example: Pair plot for visualizing relationships between age, income,

and spending score.

» Facet Grids:
» Used to plot multiple graphs across different subsets of data.
= Example: Visualizing income distribution across different age groups and

genders.

= Parallel Coordinates Plots:
* Good for visualizing multidimensional data and spotting trends.
* Example: Comparing performance metrics across different departments.

o Choosing the Right Graph:

»= Consider the nature of the data (e.g., type, size, complexity).

= Think about the story you want to tell and what the data reveals.

* Ensure clarity and avoid clutter by choosing the most straightforward

visualization.

6. Conclusion & Q&A (5 minutes)

e Objective: Summarize key points and address any remaining questions.
e Content:
o Recap the importance of understanding Python data types and selecting the appropriate
graph for different types of data.
o Highlight the importance of matching the data structure with the correct visualization
technique for effective communication of insights.
Encourage students to experiment with different graphs using their datasets.
Open the floor for questions and discussion.

Key Takeaways
o Different data types in Python (numeric, categorical, boolean) require different approaches to
visualization.

e Understanding the characteristics of your data helps in selecting the most appropriate graph to
convey insights effectively.

e Combining variables and selecting advanced visualizations can uncover deeper relationships and
trends in the data.

Resources:

Data to Viz: https://www.data-to-viz.com/

The Data Visualization Catalog: https://datavizcatalogue.com/
Chart Chooser: https://www.highcharts.com/chartchooser/

https://www.data-to-viz.com/
https://datavizcatalogue.com/
https://www.highcharts.com/chartchooser/

