
DSA 610 Redesign, Lecture 6 Outline

Lecture Outline: SQL Queries with Examples
Duration: 50 minutes

1. Introduction to SQL (5 minutes)

• Objective: Provide a brief overview of SQL, its purpose, and common uses.
• Content:

o Definition:
▪ SQL (Structured Query Language): A domain-specific language used to manage

and manipulate relational databases.
o Key Uses:

▪ Data Retrieval: Querying databases to extract data.
▪ Data Manipulation: Inserting, updating, and deleting records.
▪ Data Definition: Creating and modifying database schemas.
▪ Data Control: Managing access and permissions to data.

o Example Databases:
▪ MySQL, PostgreSQL, SQLite, SQL Server, Oracle

2. Basic SQL Query Structure (5 minutes)

• Objective: Understand the fundamental components of an SQL query.
• Content:

o SQL Syntax:
▪ SELECT: Specifies the columns to retrieve.
▪ FROM: Indicates the table(s) from which to retrieve data.
▪ WHERE: Filters rows based on specified conditions.
▪ ORDER BY: Sorts the result set by one or more columns.
▪ LIMIT/OFFSET: Limits the number of rows returned and skips a specified number

of rows.
o Example:

SELECT column1, column2
FROM table_name
WHERE condition
ORDER BY column1 DESC
LIMIT 10 OFFSET 5;

Basic Data Retrieval Queries (10 minutes)

• Objective: Learn how to retrieve data from a single table using simple SQL queries.
• Content:

o SELECT Statement:
▪ Selecting Specific Columns:

▪ Retrieve specific columns from a table.
▪ Example:

SELECT first_name, last_name
FROM employees;

Selecting All Columns:

• Retrieve all columns from a table using *.

• Example:

SELECT *
FROM employees;

Filtering Results with WHERE:

• Basic Conditions: Using equality, inequality, and comparison operators.
• Example:

SELECT first_name, last_name
FROM employees
WHERE department = 'Sales' AND salary > 50000;

Using IN, BETWEEN, and LIKE:

• IN: Filtering based on a list of values.
• BETWEEN: Filtering within a range.
• LIKE: Pattern matching with wildcards (% and _).
• Examples:

SELECT first_name, last_name
FROM employees
WHERE department IN ('Sales', 'Marketing');

SELECT first_name, last_name
FROM employees
WHERE salary BETWEEN 40000 AND 60000;

SELECT first_name, last_name
FROM employees
WHERE first_name LIKE 'J%';

Aggregation and Grouping (10 minutes)

• Objective: Perform aggregation operations and group data for analysis.
• Content:

o Aggregate Functions:
▪ COUNT, SUM, AVG, MIN, MAX: Functions to summarize data.
▪ Examples:

SELECT COUNT(*) AS total_employees
FROM employees;

SELECT AVG(salary) AS average_salary
FROM employees;

SELECT MIN(salary) AS lowest_salary, MAX(salary) AS highest_salary
FROM employees;

GROUP BY Clause:

• Grouping Data: Group data by one or more columns and apply aggregate functions.
• HAVING Clause: Filtering groups based on aggregate conditions.
• Examples:

SELECT department, COUNT(*) AS num_employees
FROM employees
GROUP BY department;

SELECT department, AVG(salary) AS average_salary
FROM employees
GROUP BY department
HAVING AVG(salary) > 50000;

Joining Tables (10 minutes)

• Objective: Learn how to combine data from multiple tables using various types of joins.
• Content:

o Types of Joins:
▪ INNER JOIN: Returns rows that have matching values in both tables.
▪ LEFT (OUTER) JOIN: Returns all rows from the left table and the matched rows

from the right table.
▪ RIGHT (OUTER) JOIN: Returns all rows from the right table and the matched

rows from the left table.
▪ FULL (OUTER) JOIN: Returns all rows when there is a match in either table.

o Examples:

-- Inner Join Example
SELECT employees.first_name, employees.last_name, departments.department_name
FROM employees
INNER JOIN departments ON employees.department_id = departments.department_id;

-- Left Join Example
SELECT employees.first_name, employees.last_name, departments.department_name
FROM employees
LEFT JOIN departments ON employees.department_id = departments.department_id;

-- Full Join Example
SELECT employees.first_name, employees.last_name, departments.department_name
FROM employees
FULL JOIN departments ON employees.department_id = departments.department_id;

Cross Join:

• Definition: Returns the Cartesian product of two tables.
• Example:

SELECT a.product_name, b.store_name
FROM products a
CROSS JOIN stores b;

Subqueries and Nested Queries (5 minutes)
• Objective: Learn how to use subqueries to make complex queries more efficient.
• Content:

o Subqueries in SELECT:
▪ Using a subquery to calculate a value within a larger query.
▪ Example:

SELECT first_name, last_name, (SELECT department_name
 FROM departments
 WHERE employees.department_id = departments.department_id) AS department
FROM employees;

Subqueries in WHERE:

• Filtering results based on a subquery.
• Example:

SELECT first_name, last_name
FROM employees
WHERE salary > (SELECT AVG(salary) FROM employees);

Practical Examples and Q&A (5 minutes)

• Objective: Reinforce learning with practical examples and address any questions.
• Content:

o Examples: Go through practical examples with the class, answering any queries that
arise.

▪ Complex Query Example: Combining JOINs, GROUP BY, and subqueries.
▪ Hands-On Exercise: Challenge students with a query to write on their own.

o Q&A Session: Encourage students to ask questions about specific SQL concepts or
queries they struggle with.

Key Takeaways

• Basic Queries: Understanding how to retrieve and filter data using SQL.
• Aggregation: Ability to summarize and group data for analysis.
• Joins: Combining data from multiple tables using different types of joins.
• Subqueries: Using nested queries to solve complex problems.

Resources:
SQL Tutorials: https://www.w3schools.com/sql/, https://www.sqltutorial.org/,
https://www.sqltutorial.org/, https://www.tutorialspoint.com/sql/index.htm

Lecture Outline: Joining Tables and Aggregation in Data Analysis
Duration: 50 minutes

1. Introduction to Joining Tables in Data Analysis (5 minutes)

• Objective: Provide context on why joining tables is essential in data analysis.
• Content:

o Definition:

https://www.w3schools.com/sql/
https://www.sqltutorial.org/
https://www.sqltutorial.org/
https://www.tutorialspoint.com/sql/index.htm

▪ Joining Tables: Combining data from two or more tables based on a related
column.

o Purpose in Data Analysis:
▪ Data Integration: Merging different data sources to create a unified dataset.
▪ Enrichment: Adding additional information to a dataset by pulling in related

data (e.g., customer demographics, product details).
▪ Handling Normalized Data: Working with relational databases where data is

divided into multiple tables to reduce redundancy.
o Examples of Use Cases:

▪ Customer Transactions: Joining sales records with customer information to
analyze purchasing behavior.

▪ Employee Performance: Merging employee details with performance metrics
for a comprehensive view.

2. Types of Joins and Their Applications (15 minutes)

• Objective: Understand different types of SQL joins and how they are applied in data analysis.
• Content:

o INNER JOIN:
▪ Definition: Returns rows with matching values in both tables.
▪ Use Case: Analyzing records where there is complete information in both tables

(e.g., orders with customer information).
▪ Example:

SELECT orders.order_id, customers.customer_name
FROM orders
INNER JOIN customers ON orders.customer_id = customers.customer_id;

LEFT (OUTER) JOIN:

• Definition: Returns all rows from the left table and matched rows from the right table.
• Use Case: Retaining all records from the primary table, even if there’s no corresponding data in

the joined table (e.g., all customers, including those with no orders).
• Example:

SELECT customers.customer_name, orders.order_id
FROM customers
LEFT JOIN orders ON customers.customer_id = orders.customer_id;

RIGHT (OUTER) JOIN:

• Definition: Returns all rows from the right table and matched rows from the left table.
• Use Case: Less common, but useful in specific situations where the right table is primary.
• Example:

SELECT orders.order_id, customers.customer_name
FROM orders
RIGHT JOIN customers ON orders.customer_id = customers.customer_id;

FULL (OUTER) JOIN:

• Definition: Returns all rows when there is a match in either table.
• Use Case: Analyzing datasets where you want to retain all information from both tables,

identifying where data may be missing on either side.

• Example:

SELECT customers.customer_name, orders.order_id
FROM customers
FULL OUTER JOIN orders ON customers.customer_id = orders.customer_id;

•
o Practical Examples:

▪ Merging Sales Data with Product Information: To analyze total sales per
product category.

▪ Combining User Data with Website Activity Logs: To assess user engagement.

3. Introduction to Aggregation in Data Analysis (5 minutes)

• Objective: Explain the purpose and importance of aggregation in data analysis.
• Content:

o Definition:
▪ Aggregation: Summarizing data by grouping and applying aggregate functions

(e.g., SUM, AVG, COUNT).
o Purpose:

▪ Data Summarization: Reducing the dataset to focus on key metrics (e.g., total
sales, average salary).

▪ Identifying Trends: Aggregating data over time or categories to uncover
patterns.

▪ Data Reduction: Simplifying large datasets for easier analysis and visualization.
o Use Cases in Data Analysis:

▪ Monthly Revenue Reports: Summarizing daily sales data into monthly totals.
▪ Customer Segmentation: Calculating average spend per customer segment.
▪ Operational Efficiency: Summarizing production data to evaluate efficiency.

4. Aggregate Functions and Grouping Data (15 minutes)

• Objective: Learn how to apply aggregate functions and group data for analysis.
• Content:

o Common Aggregate Functions:
▪ COUNT: Counting the number of rows or occurrences.
▪ SUM: Adding up numerical values.
▪ AVG: Calculating the average of a set of values.
▪ MIN/MAX: Finding the smallest or largest values.
▪ Example:

SELECT department, COUNT(*) AS employee_count, AVG(salary) AS average_salary
FROM employees
GROUP BY department;

GROUP BY Clause:

• Purpose: Grouping data by one or more columns to apply aggregate functions.
• Using HAVING: Filtering groups based on aggregate conditions.
• Example:

SELECT product_category, SUM(sales) AS total_sales
FROM sales_data
GROUP BY product_category
HAVING SUM(sales) > 10000;

•
o Practical Example:

▪ Sales Data Analysis: Grouping sales by region and product category to identify
top-performing regions and products.

5. Working with Aggregated Data in Analysis (10 minutes)

• Objective: Understand how to interpret and use aggregated data for further analysis and
decision-making.

• Content:
o Interpretation of Aggregated Data:

▪ Trends and Patterns: Recognizing key trends in the summarized data.
▪ Comparisons: Comparing different groups or categories based on the

aggregated metrics.
▪ Example: Using average sales per region to decide where to allocate marketing

resources.
o Challenges and Considerations:

▪ Loss of Detail: Aggregation can obscure granular insights; it’s important to
balance summary with detail.

▪ Outliers and Anomalies: Aggregated data might mask outliers, so it’s essential
to analyze these separately if necessary.

o Visualization of Aggregated Data:
▪ Bar Charts, Pie Charts, Line Graphs: Common ways to visualize aggregated data.
▪ Example: Visualizing total sales per month with a line graph to observe trends

over time.
o Case Study: Analyzing aggregated data in a business context to make strategic decisions

(e.g., identifying top-performing products).

6. Practical Implementation & Q&A (5 minutes)

• Objective: Apply the concepts through a hands-on example and address any questions.
• Content:

o Example: A brief exercise where students write queries to join tables and aggregate
data.

o Q&A Session: Open the floor for questions, discussing any challenges students face
when working with joins and aggregations.

Key Takeaways

• Joining Tables: Understanding the importance of combining data from multiple sources for
comprehensive analysis.

• Aggregation: Learning how to summarize and interpret data to identify trends and make
informed decisions.

• SQL Techniques: Gaining practical skills in writing SQL queries for joining tables and aggregating
data.

Resources:
Merge, Join, Concatenate and Compare in Pandas:
https://pandas.pydata.org/docs/user_guide/merging.html
SQL Using Python: https://www.geeksforgeeks.org/sql-using-python/
Python SQLite3: https://www.geeksforgeeks.org/python-sqlite/
Working with SQLite3: https://www.freecodecamp.org/news/work-with-sqlite-in-python-handbook/

Lecture Outline: Data Transformation, Feature Engineering, Dummy Variables, and Working with SQL
in Python
Duration: 50 minutes

1. Introduction to Data Transformation in Python (10 minutes)

• Objective: Understand the basics of data transformation and its importance in data analysis.
• Content:

o Definition:
▪ Data Transformation: The process of converting data from one format or

structure into another.
o Importance in Data Analysis:

▪ Preparing Data for Modeling: Ensuring that data is in the right format for
machine learning models.

▪ Enhancing Data Quality: Cleaning and structuring data to improve the accuracy
of analysis.

o Common Data Transformation Techniques:
▪ Scaling and Normalization: Adjusting the scale of data.
▪ Handling Missing Data: Filling in or removing missing values.
▪ Data Type Conversion: Changing data types for compatibility (e.g., converting

strings to integers).
o Example: Importing a dataset and applying basic transformations using pandas.

import pandas as pd

Load dataset
df = pd.read_csv('data.csv')

Scaling and normalization
df['scaled_column'] = (df['original_column'] - df['original_column'].min()) / (df['original_column'].max() -
df['original_column'].min())

Handling missing data
df.fillna(0, inplace=True)

Data type conversion
df['date_column'] = pd.to_datetime(df['date_column'])

Feature Engineering (10 minutes)

• Objective: Learn how to create new features from existing data to improve model performance.
• Content:

o Definition:

https://pandas.pydata.org/docs/user_guide/merging.html
https://www.geeksforgeeks.org/sql-using-python/
https://www.geeksforgeeks.org/python-sqlite/
https://www.freecodecamp.org/news/work-with-sqlite-in-python-handbook/

▪ Feature Engineering: The process of using domain knowledge to create new
input features that enhance the performance of a machine learning model.

o Why Feature Engineering Matters:
▪ Improving Model Accuracy: Better features can lead to more accurate

predictions.
▪ Capturing Complex Patterns: Creating features that help the model understand

the data better.
o Common Feature Engineering Techniques:

▪ Creating Interaction Terms: Combining features to capture relationships.
▪ Polynomial Features: Raising features to a power to capture non-linear

relationships.
▪ Extracting Date Components: Breaking down dates into day, month, year, etc.
▪ Example:

Interaction term
df['interaction_feature'] = df['feature1'] * df['feature2']

Polynomial feature
df['poly_feature'] = df['original_feature'] ** 2

Extracting date components
df['year'] = df['date_column'].dt.year
df['month'] = df['date_column'].dt.month
df['day'] = df['date_column'].dt.day

Dummy Variables (One-Hot Encoding) (10 minutes)

• Objective: Understand how to convert categorical variables into a format that can be provided to
machine learning algorithms.

• Content:
o Definition:

▪ Dummy Variables: Binary variables created from categorical variables to
represent the presence or absence of a category.

o Why Use Dummy Variables:
▪ Compatibility with Models: Many machine learning models require numerical

input, so categorical data must be transformed.
o How to Create Dummy Variables:

▪ One-Hot Encoding: Creating a new binary column for each category.
▪ Example:

Categorical variable
df['category'] = ['A', 'B', 'C', 'A', 'B']

One-Hot Encoding using pandas
df_dummies = pd.get_dummies(df['category'], prefix='category')

Combine with original DataFrame
df = pd.concat([df, df_dummies], axis=1)

Drop the original categorical column
df.drop('category', axis=1, inplace=True)

Removing Columns and Data Cleanup (5 minutes)

• Objective: Learn how to remove unnecessary columns and clean up data in Python.
• Content:

o Why Remove Columns:
▪ Reduce Noise: Unnecessary or redundant columns can confuse models and

reduce accuracy.
▪ Simplify the Dataset: Focus on the most relevant features for analysis.

o How to Remove Columns:
▪ Dropping Columns: Using pandas to remove specific columns.
▪ Example:

Drop multiple columns
df.drop(['column1', 'column2'], axis=1, inplace=True)

Further Data Cleanup:

• Removing Duplicates: Ensure there are no repeated rows.
• Renaming Columns: For better readability.
• Example:

Remove duplicates
df.drop_duplicates(inplace=True)

Rename columns
df.rename(columns={'old_name': 'new_name'}, inplace=True)

Working with SQL in Python (10 minutes)

• Objective: Learn how to interact with SQL databases directly from Python for data extraction
and analysis.

• Content:
o Why Integrate SQL with Python:

▪ Seamless Data Retrieval: Query data from databases directly into Python for
analysis.

▪ Complex Queries: Perform SQL operations and then continue analysis in Python.
o Connecting to a SQL Database:

▪ Using sqlite3 or SQLAlchemy: Libraries to connect Python to SQL databases.
▪ Example with SQLite:

import sqlite3
import pandas as pd

Connect to database
conn = sqlite3.connect('example.db')

Execute SQL query and load data into a DataFrame
df_sql = pd.read_sql_query("SELECT * FROM table_name", conn)

Close the connection

conn.close()

Example with SQLAlchemy (for more complex databases):
from sqlalchemy import create_engine
import pandas as pd

Create engine to connect to PostgreSQL database
engine = create_engine('postgresql://user:password@localhost/dbname')

Query data
df_sqlalchemy = pd.read_sql("SELECT * FROM table_name", engine)

•
o Common Use Cases:

▪ Querying large datasets stored in databases.
▪ Combining SQL querying with Python-based data analysis and visualization.

6. Practical Example & Q&A (5 minutes)

• Objective: Apply the learned concepts through a practical example and address any student
questions.

• Content:
o Hands-On Exercise:

▪ Example: Import a dataset, perform feature engineering, create dummy
variables, and remove unnecessary columns. Connect to a SQL database,
retrieve data, and combine it with the existing DataFrame for further analysis.

o Q&A Session: Open discussion for students to ask questions about the topics covered in
the lecture.

Key Takeaways

• Data Transformation: Learn the basics of preparing and transforming data in Python.
• Feature Engineering: Understand how to create new features to enhance model performance.
• Dummy Variables: Convert categorical data into a format usable by machine learning models.
• SQL Integration: Gain practical skills in querying SQL databases directly from Python.

Resources:
SQLite in Python: https://www.tutorialspoint.com/sqlite/sqlite_python.htm
Python SQL Libraries: https://realpython.com/python-sql-libraries/
Best Python Libraries for SQL: https://dev.to/jconn4177/guide-to-the-best-python-libraries-and-
modules-for-sql-21p0
Python Libraries for Database Management: https://www.apriorit.com/dev-blog/web-python-libraries-
for-database-management
Python Databases 101: https://builtin.com/data-science/python-database

https://www.tutorialspoint.com/sqlite/sqlite_python.htm
https://realpython.com/python-sql-libraries/
https://dev.to/jconn4177/guide-to-the-best-python-libraries-and-modules-for-sql-21p0
https://dev.to/jconn4177/guide-to-the-best-python-libraries-and-modules-for-sql-21p0
https://www.apriorit.com/dev-blog/web-python-libraries-for-database-management
https://www.apriorit.com/dev-blog/web-python-libraries-for-database-management
https://builtin.com/data-science/python-database

