
DSA 610 Redesign, Lecture 7 Outline 
 
Lecture Outline: Data Maintenance, Consistency, Accuracy, Integrity, ACID, and Data 
Validation/Verification 
Duration: 50 minutes 

 
1. Introduction to Data Maintenance (5 minutes) 

• Objective: Understand the importance of maintaining data quality in data-driven environments. 
• Content: 

o Definition: 
▪ Data Maintenance: The process of ensuring data remains accurate, consistent, 

and reliable over time. 
o Importance of Data Maintenance: 

▪ Decision-Making: Accurate and consistent data is essential for making informed 
decisions. 

▪ Regulatory Compliance: Ensuring data meets legal and regulatory standards. 
▪ Operational Efficiency: Reliable data supports smooth business operations and 

reduces errors. 

 
2. Data Consistency, Accuracy, and Integrity (10 minutes) 

• Objective: Explore the key concepts of data consistency, accuracy, and integrity, and how they 
impact data quality. 

• Content: 
o Data Consistency: 

▪ Definition: Ensuring that data is uniform and reliable across different systems 
and databases. 

▪ Examples: 
▪ Cross-System Consistency: Ensuring that customer information is the 

same across sales, CRM, and support databases. 
▪ Time Consistency: Maintaining the same data across different time 

periods (e.g., daily reports should match monthly summaries). 
o Data Accuracy: 

▪ Definition: Ensuring that data correctly reflects the real-world entities or events 
it represents. 

▪ Examples: 
▪ Accurate Records: Customer addresses must be accurate to ensure 

successful deliveries. 
▪ Measurement Accuracy: Sensor data must be accurate to support 

proper analysis in IoT applications. 
o Data Integrity: 

▪ Definition: Maintaining and ensuring the accuracy and consistency of data over 
its lifecycle. 

▪ Components: 
▪ Entity Integrity: Ensuring that each entity (e.g., record) is unique and 

identifiable. 
▪ Referential Integrity: Ensuring that relationships between entities are 

consistent (e.g., foreign keys in databases). 
▪ Example: 



▪ Database Relationships: A sales order in a database should not 
reference a non-existent customer. 

 
3. ACID Properties in Databases (10 minutes) 

• Objective: Learn about the ACID properties that ensure reliable transaction processing in 
databases. 

• Content: 
o Definition of ACID: 

▪ Atomicity: Ensures that a transaction is all-or-nothing. If one part of the 
transaction fails, the entire transaction fails. 

▪ Example: Transferring money between bank accounts—both the debit 
and credit must occur, or neither should. 

▪ Consistency: Ensures that a transaction brings the database from one valid state 
to another, preserving database rules. 

▪ Example: Ensuring that data constraints (e.g., balance must be non-
negative) are maintained after transactions. 

▪ Isolation: Ensures that transactions occurring concurrently do not affect each 
other’s outcomes. 

▪ Example: Two users updating the same record should not see each 
other’s intermediate states. 

▪ Durability: Ensures that once a transaction is committed, it remains so, even in 
the case of a system failure. 

▪ Example: After a transaction is confirmed, it should not be lost even if 
there’s a power outage. 

o Importance of ACID: 
▪ Reliability in Databases: ACID properties are crucial for maintaining reliable 

databases, especially in high-stakes applications like finance, healthcare, and e-
commerce. 

▪ Example in Practice: SQL databases like MySQL, PostgreSQL, and Oracle 
implement ACID properties to ensure data consistency and reliability. 

 
4. Data Validation and Verification Methods (15 minutes) 

• Objective: Understand the techniques and methods for validating and verifying data to ensure 
its quality. 

• Content: 
o Data Validation: 

▪ Definition: The process of ensuring that data meets defined criteria and is 
suitable for analysis or processing. 

▪ Types of Validation: 
▪ Format Validation: Ensuring data is in the correct format (e.g., dates, 

email addresses). 
▪ Range Validation: Ensuring numerical data falls within a specified range 

(e.g., age should be between 0 and 120). 
▪ Consistency Validation: Ensuring data values are consistent across 

different fields (e.g., start date should be before end date). 
▪ Example: 

# Example of data validation in Python 
import pandas as pd 



 
# Load dataset 
df = pd.read_csv('data.csv') 
 
# Validate email format 
df['valid_email'] = df['email'].str.contains(r'^[\w\.-]+@[\w\.-]+\.\w+$') 
 
# Validate range 
df['valid_age'] = df['age'].between(0, 120) 
 

•  
o Data Verification: 

▪ Definition: The process of ensuring that data is accurate and reflects real-world 
conditions. 

▪ Techniques: 
▪ Cross-Verification: Comparing data from different sources to ensure 

consistency. 
▪ Manual Review: Checking a sample of the data manually to ensure 

accuracy. 
▪ Automated Verification: Using scripts or tools to verify data against 

known benchmarks or constraints. 
▪ Example: 

▪ Verification in Data Entry: Cross-checking entered data with source 
documents (e.g., invoices, surveys). 

▪ Verification in Data Migration: Ensuring that data transferred from one 
system to another remains accurate and complete. 

o Common Tools for Data Validation and Verification: 
▪ Pandas in Python: For data validation and transformation. 
▪ SQL Queries: For verifying data in relational databases. 
▪ Excel: For basic data validation using data validation rules and conditional 

formatting. 

 
5. Practical Examples and Case Studies (5 minutes) 

• Objective: Apply the concepts through practical examples and case studies. 
• Content: 

o Case Study 1: Implementing data validation in a healthcare database to ensure patient 
records are accurate and consistent. 

o Case Study 2: Using ACID properties to ensure reliable transaction processing in an e-
commerce application. 

o Hands-On Example: Demonstrate data validation techniques in Python and SQL. 

 
6. Q&A and Discussion (5 minutes) 

• Objective: Address any questions and discuss real-world challenges related to maintaining data 
consistency, accuracy, and integrity. 

• Content: 
o Q&A Session: Open the floor for questions from students. 
o Discussion: Explore common challenges in data maintenance and how to overcome 

them in different industries. 



 
Key Takeaways 

• Data Maintenance: Importance of keeping data accurate, consistent, and reliable. 
• ACID Properties: Understanding how ACID ensures reliable transaction processing in databases. 
• Data Validation/Verification: Techniques for ensuring data meets quality standards before 

analysis. 
 
Resources: 
Data Maintenance: https://www.validity.com/data-quality/data-maintenance-and-quality/ 
Data Maintenance vs. Data Cleansing: https://www.indeed.com/career-advice/career-
development/data-maintenance-vs-data-cleansing 
Implementing a Data Maintenance Strategy: https://help.hcl-
software.com/commerce/8.0.0/admin/concepts/cdbdatamaintenance.html 
Recommended Data Maintenance Activities: https://iawindows.zendesk.com/hc/en-
us/articles/26770147652499-Recommended-Data-Maintenance-Activities 
8 Best Practices: https://www.tierpoint.com/blog/data-center-maintenance/ 
9 Ways to Maintain Data Quality: https://www.actian.com/blog/data-management/data-management-
quality/ 
ACID for DBMS: https://www.geeksforgeeks.org/acid-properties-in-dbms/ 
https://www.databricks.com/glossary/acid-transactions  https://www.freecodecamp.org/news/acid-
databases-explained/ https://www.bmc.com/blogs/acid-atomic-consistent-isolated-durable/  
In MongoDB: https://www.mongodb.com/resources/basics/databases/acid-transactions 
 
Lecture Outline: Data Exploration and Model Planning in the Data Analysis Lifecycle 
Duration: 50 minutes 

 
1. Introduction to Data Exploration (10 minutes) 

• Objective: Understand the purpose and techniques of data exploration in the data analysis 
lifecycle. 

• Content: 
o Definition: 

▪ Data Exploration: The process of analyzing and understanding the 
characteristics of a dataset before applying statistical or machine learning 
models. 

o Purpose of Data Exploration: 
▪ Understanding Data Distribution: Identifying patterns, trends, and anomalies. 
▪ Formulating Hypotheses: Generating hypotheses about relationships within the 

data. 
▪ Preparing for Modeling: Identifying preprocessing needs and feature selection. 

o Key Steps in Data Exploration: 
▪ Summary Statistics: Using measures like mean, median, mode, standard 

deviation. 
▪ Data Visualization: Creating plots to visualize data distributions and 

relationships. 
▪ Correlation Analysis: Checking relationships between variables. 

o Example: 
import pandas as pd 
import seaborn as sns 
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import matplotlib.pyplot as plt 
 
# Load dataset 
df = pd.read_csv('data.csv') 
 
# Summary statistics 
print(df.describe()) 
 
# Data visualization 
sns.pairplot(df) 
plt.show() 
 
# Correlation analysis 
print(df.corr()) 
 
Key Techniques in Data Exploration (15 minutes) 

• Objective: Explore specific techniques and tools used during the data exploration phase. 
• Content: 

o Univariate Analysis: 
▪ Definition: Analysis of individual variables to understand their distributions. 
▪ Techniques: 

▪ Histograms: Visualizing the distribution of a single variable. 
▪ Box Plots: Identifying outliers and understanding the spread. 

▪ Example: 
 
# Histogram 
df['variable'].hist() 
plt.title('Histogram of Variable') 
plt.xlabel('Value') 
plt.ylabel('Frequency') 
plt.show() 
 
# Box Plot 
sns.boxplot(x='variable', data=df) 
plt.title('Box Plot of Variable') 
plt.show() 
 
Bivariate Analysis: 

• Definition: Analyzing relationships between two variables. 
• Techniques: 

o Scatter Plots: Examining the relationship between two continuous variables. 
o Heatmaps: Visualizing correlation matrices. 

• Example: 
# Scatter Plot 
plt.scatter(df['variable1'], df['variable2']) 
plt.title('Scatter Plot of Variable1 vs. Variable2') 
plt.xlabel('Variable1') 
plt.ylabel('Variable2') 



plt.show() 
 
# Heatmap 
sns.heatmap(df.corr(), annot=True, cmap='coolwarm') 
plt.title('Correlation Heatmap') 
plt.show() 
 
Multivariate Analysis: 

• Definition: Analyzing interactions between more than two variables. 
• Techniques: 

o Pair Plots: Visualizing relationships between multiple variables. 
o Principal Component Analysis (PCA): Reducing dimensionality while preserving 

variance. 
• Example: 

# Pair Plot 
sns.pairplot(df, hue='target_variable') 
plt.show() 
 
Model Planning (15 minutes) 

• Objective: Learn how to plan and prepare for model development based on data exploration 
insights. 

• Content: 
o Defining Objectives: 

▪ Problem Statement: Clearly define the problem to be solved (e.g., classification, 
regression). 

▪ Success Metrics: Determine how success will be measured (e.g., accuracy, F1-
score). 

o Feature Selection: 
▪ Definition: Choosing which features to include in the model based on 

exploration. 
▪ Techniques: 

▪ Correlation Analysis: Selecting features with significant correlations to 
the target variable. 

▪ Feature Importance: Using models like Random Forest to evaluate 
feature importance. 

▪ Example: 
 
from sklearn.ensemble import RandomForestClassifier 
 
# Feature Importance 
model = RandomForestClassifier() 
model.fit(df.drop('target', axis=1), df['target']) 
feature_importances = model.feature_importances_ 
features = df.columns[:-1] 
importance_df = pd.DataFrame({'Feature': features, 'Importance': feature_importances}) 
importance_df.sort_values(by='Importance', ascending=False, inplace=True) 
print(importance_df) 
 



Data Preprocessing: 
• Definition: Preparing data for modeling, including handling missing values and encoding 

categorical variables. 
• Techniques: 

o Handling Missing Data: Imputation or removal of missing values. 
o Encoding Categorical Variables: One-hot encoding or label encoding. 

• Example: 
 
# Handling Missing Data 
df.fillna(df.mean(), inplace=True) 
 
# One-Hot Encoding 
df_encoded = pd.get_dummies(df, columns=['categorical_feature']) 
 
Model Selection: 

• Definition: Choosing appropriate models based on the problem and data characteristics. 
• Types of Models: 

o Classification Models: Logistic Regression, Decision Trees, etc. 
o Regression Models: Linear Regression, Ridge Regression, etc. 

• Example: 
 
from sklearn.model_selection import train_test_split 
from sklearn.linear_model import LogisticRegression 
 
# Train-Test Split 
X_train, X_test, y_train, y_test = train_test_split(df.drop('target', axis=1), df['target'], test_size=0.2) 
 
# Model Selection 
model = LogisticRegression() 
model.fit(X_train, y_train) 
print(f"Model Accuracy: {model.score(X_test, y_test)}") 
 
Planning for Validation and Evaluation (5 minutes) 

• Objective: Understand how to plan for model validation and evaluation. 
• Content: 

o Cross-Validation: 
▪ Definition: Technique for assessing the performance of the model by dividing 

the data into multiple folds. 
▪ Types: K-Fold Cross-Validation. 

o Evaluation Metrics: 
▪ Classification Metrics: Accuracy, Precision, Recall, F1-Score. 
▪ Regression Metrics: Mean Absolute Error (MAE), Mean Squared Error (MSE), R-

squared. 
o Example: 

 
from sklearn.model_selection import cross_val_score 
 
# Cross-Validation 



scores = cross_val_score(model, df.drop('target', axis=1), df['target'], cv=5) 
print(f"Cross-Validation Scores: {scores}") 
 
Q&A and Discussion (5 minutes) 

• Objective: Address any questions and discuss real-world challenges in data exploration and 
model planning. 

• Content: 
o Q&A Session: Open the floor for student questions. 
o Discussion: Explore practical challenges and solutions in data exploration and planning 

for models. 
•  

o  

 
Key Takeaways 

• Data Exploration: Techniques to understand and visualize data distributions and relationships. 
• Model Planning: Steps for preparing data, selecting features, choosing models, and planning for 

validation. 
• Practical Skills: Applying data exploration insights to plan effective models and evaluate their 

performance. 
 
Resources: 
Data Exploration: https://www.heavy.ai/learn/data-exploration 
https://www.matillion.com/learn/blog/data-exploration https://www.geeksforgeeks.org/what-is-data-
exploration-and-its-process/ https://www.analyticsvidhya.com/blog/2016/01/guide-data-exploration/ 
https://www.simplilearn.com/data-exploration-article  
Theory and Techniques: https://www.keboola.com/blog/data-exploration-techniques 
In Python: https://www.kaggle.com/code/pmarcelino/comprehensive-data-exploration-with-python 
https://www.geeksforgeeks.org/exploratory-data-analysis-in-python/ 
https://www.analyticsvidhya.com/blog/2015/04/comprehensive-guide-data-exploration-sas-using-
python-numpy-scipy-matplotlib-pandas/ https://www.omdena.com/blog/a-beginners-guide-to-
exploratory-data-analysis-with-python https://hex.tech/blog/explore-data-with-python-and-pandas/  
 
Lecture Outline: Imputations, Dealing with Missing Values, Writing Functions, and Simulations in 
Python 
Duration: 50 minutes 

 
1. Introduction to Missing Values and Imputations (10 minutes) 

• Objective: Understand common techniques for handling missing values and performing 
imputations. 

• Content: 
o Definition of Missing Values: 

▪ Missing Values: Data entries that are not recorded or are incomplete. 
o Importance of Handling Missing Values: 

▪ Impact on Analysis: Missing values can skew results and reduce the accuracy of 
models. 

▪ Techniques for Imputation: Strategies to fill in missing values. 
o Example Dataset: 

import pandas as pd 
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import numpy as np 
 
# Create example DataFrame with missing values 
data = {'A': [1, 2, np.nan, 4], 
        'B': [5, np.nan, 7, 8], 
        'C': ['x', 'y', 'z', np.nan]} 
df = pd.DataFrame(data) 
print(df) 
 
Techniques for Handling Missing Values (15 minutes) 

• Objective: Learn and apply different methods for imputing missing values. 
• Content: 

o 1. Removing Missing Values: 
▪ Definition: Removing rows or columns with missing values. 
▪ Example: 

# Drop rows with missing values 
df_dropped_rows = df.dropna() 
 
# Drop columns with missing values 
df_dropped_cols = df.dropna(axis=1) 
 
print("Dropped Rows:\n", df_dropped_rows) 
print("Dropped Columns:\n", df_dropped_cols) 
 
Mean/Median Imputation: 

• Definition: Filling missing values with the mean or median of the column. 
• Example: 

 
# Mean imputation 
df['A'].fillna(df['A'].mean(), inplace=True) 
 
# Median imputation 
df['B'].fillna(df['B'].median(), inplace=True) 
 
print("Mean Imputation:\n", df) 
 
3. Mode Imputation: 

• Definition: Filling missing values with the mode (most frequent value) of the column. 
• Example: 

 
# Mode imputation for categorical data 
mode_value = df['C'].mode()[0] 
df['C'].fillna(mode_value, inplace=True) 
 
print("Mode Imputation:\n", df) 
 
4. Interpolation: 

• Definition: Estimating missing values based on the values of surrounding data. 



• Example: 
 
# Interpolation 
df_interpolated = df.interpolate() 
 
print("Interpolated Data:\n", df_interpolated) 
 
3. Writing Functions in Python (10 minutes) 

• Objective: Learn how to create reusable functions for data handling and imputation tasks. 
• Content: 

o Function Definition: 
▪ Syntax: How to define a function using def keyword. 
▪ Example: 

 
def impute_missing_values(df): 
    """Impute missing values with mean for numerical columns and mode for categorical columns.""" 
    for column in df.columns: 
        if df[column].dtype == 'object': 
            mode_value = df[column].mode()[0] 
            df[column].fillna(mode_value, inplace=True) 
        else: 
            mean_value = df[column].mean() 
            df[column].fillna(mean_value, inplace=True) 
    return df 
 
df_imputed = impute_missing_values(df.copy()) 
print("Data After Imputation:\n", df_imputed) 
 
Writing Functions for Simulations: 

• Example Function to Simulate Random Data: 
def simulate_random_data(size, mean=0, std=1): 
    """Simulate random data with specified mean and standard deviation.""" 
    return np.random.normal(loc=mean, scale=std, size=size) 
 
simulated_data = simulate_random_data(100, mean=5, std=2) 
print("Simulated Data:\n", simulated_data[:10]) 
 
4. Performing Simulations (10 minutes) 

• Objective: Understand how to perform simulations to generate data or test hypotheses. 
• Content: 

o 1. Simulating Data Distributions: 
▪ Example: 

import matplotlib.pyplot as plt 
 
# Simulate normal distribution data 
data_normal = np.random.normal(loc=0, scale=1, size=1000) 
plt.hist(data_normal, bins=30, edgecolor='k') 
plt.title('Normal Distribution') 



plt.show() 
 
2. Bootstrapping: 

• Definition: A resampling technique to estimate the distribution of a statistic. 
• Example: 

 
from sklearn.utils import resample 
 
# Original dataset 
original_data = df['A'].dropna() 
 
# Bootstrapping 
bootstrap_sample = resample(original_data, n_samples=len(original_data), replace=True) 
print("Bootstrap Sample:\n", bootstrap_sample) 
 
3. Monte Carlo Simulations: 

• Definition: Using randomness to solve problems or simulate processes. 
• Example: 

 
def monte_carlo_simulation(num_trials): 
    results = [] 
    for _ in range(num_trials): 
        result = np.random.normal(loc=0, scale=1) 
        results.append(result) 
    return np.mean(results) 
 
mean_result = monte_carlo_simulation(1000) 
print("Mean Result of Monte Carlo Simulation:", mean_result) 
 
5. Practical Examples and Q&A (5 minutes) 

• Objective: Apply the concepts through practical examples and answer any questions. 
• Content: 

o Hands-On Exercise: Implement a function to handle missing values and perform 
simulations on a sample dataset. 

o Q&A Session: Address any questions and clarify concepts discussed during the lecture. 

 
Key Takeaways 

• Imputations: Techniques for handling missing values including mean, median, mode imputation, 
and interpolation. 

• Functions: How to write reusable functions in Python for data handling and simulations. 
• Simulations: Performing simulations to generate data and test hypotheses. 

 
Resources: 
Writing Functions in Python: https://www.w3schools.com/python/python_functions.asp 
https://www.geeksforgeeks.org/python-functions/ https://www.programiz.com/python-
programming/function https://www.datacamp.com/tutorial/functions-python-tutorial 
Simulations: https://discovery.cs.illinois.edu/learn/Simulation-and-Distributions/Simple-Simulations-in-
Python/ https://realpython.com/simpy-simulating-with-python/ 

https://www.w3schools.com/python/python_functions.asp
https://www.geeksforgeeks.org/python-functions/
https://www.programiz.com/python-programming/function
https://www.programiz.com/python-programming/function
https://www.datacamp.com/tutorial/functions-python-tutorial
https://discovery.cs.illinois.edu/learn/Simulation-and-Distributions/Simple-Simulations-in-Python/
https://discovery.cs.illinois.edu/learn/Simulation-and-Distributions/Simple-Simulations-in-Python/
https://realpython.com/simpy-simulating-with-python/


Bootstrapping in Python: https://www.digitalocean.com/community/tutorials/bootstrap-sampling-in-
python https://carpentries-incubator.github.io/machine-learning-novice-python/07-
bootstrapping/index.html 
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.bootstrap.html 
Joining Dataframes in Pandas: https://www.datacamp.com/tutorial/joining-dataframes-pandas 
Merging, Joining and Concatenating: https://www.geeksforgeeks.org/python-pandas-merging-joining-
and-concatenating/ 
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