
DSA 610 Redesign, Lecture 7 Outline

Lecture Outline: Data Maintenance, Consistency, Accuracy, Integrity, ACID, and Data
Validation/Verification
Duration: 50 minutes

1. Introduction to Data Maintenance (5 minutes)

• Objective: Understand the importance of maintaining data quality in data-driven environments.
• Content:

o Definition:
▪ Data Maintenance: The process of ensuring data remains accurate, consistent,

and reliable over time.
o Importance of Data Maintenance:

▪ Decision-Making: Accurate and consistent data is essential for making informed
decisions.

▪ Regulatory Compliance: Ensuring data meets legal and regulatory standards.
▪ Operational Efficiency: Reliable data supports smooth business operations and

reduces errors.

2. Data Consistency, Accuracy, and Integrity (10 minutes)

• Objective: Explore the key concepts of data consistency, accuracy, and integrity, and how they
impact data quality.

• Content:
o Data Consistency:

▪ Definition: Ensuring that data is uniform and reliable across different systems
and databases.

▪ Examples:
▪ Cross-System Consistency: Ensuring that customer information is the

same across sales, CRM, and support databases.
▪ Time Consistency: Maintaining the same data across different time

periods (e.g., daily reports should match monthly summaries).
o Data Accuracy:

▪ Definition: Ensuring that data correctly reflects the real-world entities or events
it represents.

▪ Examples:
▪ Accurate Records: Customer addresses must be accurate to ensure

successful deliveries.
▪ Measurement Accuracy: Sensor data must be accurate to support

proper analysis in IoT applications.
o Data Integrity:

▪ Definition: Maintaining and ensuring the accuracy and consistency of data over
its lifecycle.

▪ Components:
▪ Entity Integrity: Ensuring that each entity (e.g., record) is unique and

identifiable.
▪ Referential Integrity: Ensuring that relationships between entities are

consistent (e.g., foreign keys in databases).
▪ Example:

▪ Database Relationships: A sales order in a database should not
reference a non-existent customer.

3. ACID Properties in Databases (10 minutes)

• Objective: Learn about the ACID properties that ensure reliable transaction processing in
databases.

• Content:
o Definition of ACID:

▪ Atomicity: Ensures that a transaction is all-or-nothing. If one part of the
transaction fails, the entire transaction fails.

▪ Example: Transferring money between bank accounts—both the debit
and credit must occur, or neither should.

▪ Consistency: Ensures that a transaction brings the database from one valid state
to another, preserving database rules.

▪ Example: Ensuring that data constraints (e.g., balance must be non-
negative) are maintained after transactions.

▪ Isolation: Ensures that transactions occurring concurrently do not affect each
other’s outcomes.

▪ Example: Two users updating the same record should not see each
other’s intermediate states.

▪ Durability: Ensures that once a transaction is committed, it remains so, even in
the case of a system failure.

▪ Example: After a transaction is confirmed, it should not be lost even if
there’s a power outage.

o Importance of ACID:
▪ Reliability in Databases: ACID properties are crucial for maintaining reliable

databases, especially in high-stakes applications like finance, healthcare, and e-
commerce.

▪ Example in Practice: SQL databases like MySQL, PostgreSQL, and Oracle
implement ACID properties to ensure data consistency and reliability.

4. Data Validation and Verification Methods (15 minutes)

• Objective: Understand the techniques and methods for validating and verifying data to ensure
its quality.

• Content:
o Data Validation:

▪ Definition: The process of ensuring that data meets defined criteria and is
suitable for analysis or processing.

▪ Types of Validation:
▪ Format Validation: Ensuring data is in the correct format (e.g., dates,

email addresses).
▪ Range Validation: Ensuring numerical data falls within a specified range

(e.g., age should be between 0 and 120).
▪ Consistency Validation: Ensuring data values are consistent across

different fields (e.g., start date should be before end date).
▪ Example:

Example of data validation in Python
import pandas as pd

Load dataset
df = pd.read_csv('data.csv')

Validate email format
df['valid_email'] = df['email'].str.contains(r'^[\w\.-]+@[\w\.-]+\.\w+$')

Validate range
df['valid_age'] = df['age'].between(0, 120)

•
o Data Verification:

▪ Definition: The process of ensuring that data is accurate and reflects real-world
conditions.

▪ Techniques:
▪ Cross-Verification: Comparing data from different sources to ensure

consistency.
▪ Manual Review: Checking a sample of the data manually to ensure

accuracy.
▪ Automated Verification: Using scripts or tools to verify data against

known benchmarks or constraints.
▪ Example:

▪ Verification in Data Entry: Cross-checking entered data with source
documents (e.g., invoices, surveys).

▪ Verification in Data Migration: Ensuring that data transferred from one
system to another remains accurate and complete.

o Common Tools for Data Validation and Verification:
▪ Pandas in Python: For data validation and transformation.
▪ SQL Queries: For verifying data in relational databases.
▪ Excel: For basic data validation using data validation rules and conditional

formatting.

5. Practical Examples and Case Studies (5 minutes)

• Objective: Apply the concepts through practical examples and case studies.
• Content:

o Case Study 1: Implementing data validation in a healthcare database to ensure patient
records are accurate and consistent.

o Case Study 2: Using ACID properties to ensure reliable transaction processing in an e-
commerce application.

o Hands-On Example: Demonstrate data validation techniques in Python and SQL.

6. Q&A and Discussion (5 minutes)

• Objective: Address any questions and discuss real-world challenges related to maintaining data
consistency, accuracy, and integrity.

• Content:
o Q&A Session: Open the floor for questions from students.
o Discussion: Explore common challenges in data maintenance and how to overcome

them in different industries.

Key Takeaways

• Data Maintenance: Importance of keeping data accurate, consistent, and reliable.
• ACID Properties: Understanding how ACID ensures reliable transaction processing in databases.
• Data Validation/Verification: Techniques for ensuring data meets quality standards before

analysis.

Resources:
Data Maintenance: https://www.validity.com/data-quality/data-maintenance-and-quality/
Data Maintenance vs. Data Cleansing: https://www.indeed.com/career-advice/career-
development/data-maintenance-vs-data-cleansing
Implementing a Data Maintenance Strategy: https://help.hcl-
software.com/commerce/8.0.0/admin/concepts/cdbdatamaintenance.html
Recommended Data Maintenance Activities: https://iawindows.zendesk.com/hc/en-
us/articles/26770147652499-Recommended-Data-Maintenance-Activities
8 Best Practices: https://www.tierpoint.com/blog/data-center-maintenance/
9 Ways to Maintain Data Quality: https://www.actian.com/blog/data-management/data-management-
quality/
ACID for DBMS: https://www.geeksforgeeks.org/acid-properties-in-dbms/
https://www.databricks.com/glossary/acid-transactions https://www.freecodecamp.org/news/acid-
databases-explained/ https://www.bmc.com/blogs/acid-atomic-consistent-isolated-durable/
In MongoDB: https://www.mongodb.com/resources/basics/databases/acid-transactions

Lecture Outline: Data Exploration and Model Planning in the Data Analysis Lifecycle
Duration: 50 minutes

1. Introduction to Data Exploration (10 minutes)

• Objective: Understand the purpose and techniques of data exploration in the data analysis
lifecycle.

• Content:
o Definition:

▪ Data Exploration: The process of analyzing and understanding the
characteristics of a dataset before applying statistical or machine learning
models.

o Purpose of Data Exploration:
▪ Understanding Data Distribution: Identifying patterns, trends, and anomalies.
▪ Formulating Hypotheses: Generating hypotheses about relationships within the

data.
▪ Preparing for Modeling: Identifying preprocessing needs and feature selection.

o Key Steps in Data Exploration:
▪ Summary Statistics: Using measures like mean, median, mode, standard

deviation.
▪ Data Visualization: Creating plots to visualize data distributions and

relationships.
▪ Correlation Analysis: Checking relationships between variables.

o Example:
import pandas as pd
import seaborn as sns

https://www.validity.com/data-quality/data-maintenance-and-quality/
https://www.indeed.com/career-advice/career-development/data-maintenance-vs-data-cleansing
https://www.indeed.com/career-advice/career-development/data-maintenance-vs-data-cleansing
https://help.hcl-software.com/commerce/8.0.0/admin/concepts/cdbdatamaintenance.html
https://help.hcl-software.com/commerce/8.0.0/admin/concepts/cdbdatamaintenance.html
https://iawindows.zendesk.com/hc/en-us/articles/26770147652499-Recommended-Data-Maintenance-Activities
https://iawindows.zendesk.com/hc/en-us/articles/26770147652499-Recommended-Data-Maintenance-Activities
https://www.tierpoint.com/blog/data-center-maintenance/
https://www.actian.com/blog/data-management/data-management-quality/
https://www.actian.com/blog/data-management/data-management-quality/
https://www.geeksforgeeks.org/acid-properties-in-dbms/
https://www.databricks.com/glossary/acid-transactions
https://www.freecodecamp.org/news/acid-databases-explained/
https://www.freecodecamp.org/news/acid-databases-explained/
https://www.bmc.com/blogs/acid-atomic-consistent-isolated-durable/
https://www.mongodb.com/resources/basics/databases/acid-transactions

import matplotlib.pyplot as plt

Load dataset
df = pd.read_csv('data.csv')

Summary statistics
print(df.describe())

Data visualization
sns.pairplot(df)
plt.show()

Correlation analysis
print(df.corr())

Key Techniques in Data Exploration (15 minutes)

• Objective: Explore specific techniques and tools used during the data exploration phase.
• Content:

o Univariate Analysis:
▪ Definition: Analysis of individual variables to understand their distributions.
▪ Techniques:

▪ Histograms: Visualizing the distribution of a single variable.
▪ Box Plots: Identifying outliers and understanding the spread.

▪ Example:

Histogram
df['variable'].hist()
plt.title('Histogram of Variable')
plt.xlabel('Value')
plt.ylabel('Frequency')
plt.show()

Box Plot
sns.boxplot(x='variable', data=df)
plt.title('Box Plot of Variable')
plt.show()

Bivariate Analysis:

• Definition: Analyzing relationships between two variables.
• Techniques:

o Scatter Plots: Examining the relationship between two continuous variables.
o Heatmaps: Visualizing correlation matrices.

• Example:
Scatter Plot
plt.scatter(df['variable1'], df['variable2'])
plt.title('Scatter Plot of Variable1 vs. Variable2')
plt.xlabel('Variable1')
plt.ylabel('Variable2')

plt.show()

Heatmap
sns.heatmap(df.corr(), annot=True, cmap='coolwarm')
plt.title('Correlation Heatmap')
plt.show()

Multivariate Analysis:

• Definition: Analyzing interactions between more than two variables.
• Techniques:

o Pair Plots: Visualizing relationships between multiple variables.
o Principal Component Analysis (PCA): Reducing dimensionality while preserving

variance.
• Example:

Pair Plot
sns.pairplot(df, hue='target_variable')
plt.show()

Model Planning (15 minutes)

• Objective: Learn how to plan and prepare for model development based on data exploration
insights.

• Content:
o Defining Objectives:

▪ Problem Statement: Clearly define the problem to be solved (e.g., classification,
regression).

▪ Success Metrics: Determine how success will be measured (e.g., accuracy, F1-
score).

o Feature Selection:
▪ Definition: Choosing which features to include in the model based on

exploration.
▪ Techniques:

▪ Correlation Analysis: Selecting features with significant correlations to
the target variable.

▪ Feature Importance: Using models like Random Forest to evaluate
feature importance.

▪ Example:

from sklearn.ensemble import RandomForestClassifier

Feature Importance
model = RandomForestClassifier()
model.fit(df.drop('target', axis=1), df['target'])
feature_importances = model.feature_importances_
features = df.columns[:-1]
importance_df = pd.DataFrame({'Feature': features, 'Importance': feature_importances})
importance_df.sort_values(by='Importance', ascending=False, inplace=True)
print(importance_df)

Data Preprocessing:
• Definition: Preparing data for modeling, including handling missing values and encoding

categorical variables.
• Techniques:

o Handling Missing Data: Imputation or removal of missing values.
o Encoding Categorical Variables: One-hot encoding or label encoding.

• Example:

Handling Missing Data
df.fillna(df.mean(), inplace=True)

One-Hot Encoding
df_encoded = pd.get_dummies(df, columns=['categorical_feature'])

Model Selection:

• Definition: Choosing appropriate models based on the problem and data characteristics.
• Types of Models:

o Classification Models: Logistic Regression, Decision Trees, etc.
o Regression Models: Linear Regression, Ridge Regression, etc.

• Example:

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression

Train-Test Split
X_train, X_test, y_train, y_test = train_test_split(df.drop('target', axis=1), df['target'], test_size=0.2)

Model Selection
model = LogisticRegression()
model.fit(X_train, y_train)
print(f"Model Accuracy: {model.score(X_test, y_test)}")

Planning for Validation and Evaluation (5 minutes)

• Objective: Understand how to plan for model validation and evaluation.
• Content:

o Cross-Validation:
▪ Definition: Technique for assessing the performance of the model by dividing

the data into multiple folds.
▪ Types: K-Fold Cross-Validation.

o Evaluation Metrics:
▪ Classification Metrics: Accuracy, Precision, Recall, F1-Score.
▪ Regression Metrics: Mean Absolute Error (MAE), Mean Squared Error (MSE), R-

squared.
o Example:

from sklearn.model_selection import cross_val_score

Cross-Validation

scores = cross_val_score(model, df.drop('target', axis=1), df['target'], cv=5)
print(f"Cross-Validation Scores: {scores}")

Q&A and Discussion (5 minutes)

• Objective: Address any questions and discuss real-world challenges in data exploration and
model planning.

• Content:
o Q&A Session: Open the floor for student questions.
o Discussion: Explore practical challenges and solutions in data exploration and planning

for models.
•

o

Key Takeaways

• Data Exploration: Techniques to understand and visualize data distributions and relationships.
• Model Planning: Steps for preparing data, selecting features, choosing models, and planning for

validation.
• Practical Skills: Applying data exploration insights to plan effective models and evaluate their

performance.

Resources:
Data Exploration: https://www.heavy.ai/learn/data-exploration
https://www.matillion.com/learn/blog/data-exploration https://www.geeksforgeeks.org/what-is-data-
exploration-and-its-process/ https://www.analyticsvidhya.com/blog/2016/01/guide-data-exploration/
https://www.simplilearn.com/data-exploration-article
Theory and Techniques: https://www.keboola.com/blog/data-exploration-techniques
In Python: https://www.kaggle.com/code/pmarcelino/comprehensive-data-exploration-with-python
https://www.geeksforgeeks.org/exploratory-data-analysis-in-python/
https://www.analyticsvidhya.com/blog/2015/04/comprehensive-guide-data-exploration-sas-using-
python-numpy-scipy-matplotlib-pandas/ https://www.omdena.com/blog/a-beginners-guide-to-
exploratory-data-analysis-with-python https://hex.tech/blog/explore-data-with-python-and-pandas/

Lecture Outline: Imputations, Dealing with Missing Values, Writing Functions, and Simulations in
Python
Duration: 50 minutes

1. Introduction to Missing Values and Imputations (10 minutes)

• Objective: Understand common techniques for handling missing values and performing
imputations.

• Content:
o Definition of Missing Values:

▪ Missing Values: Data entries that are not recorded or are incomplete.
o Importance of Handling Missing Values:

▪ Impact on Analysis: Missing values can skew results and reduce the accuracy of
models.

▪ Techniques for Imputation: Strategies to fill in missing values.
o Example Dataset:

import pandas as pd

https://www.heavy.ai/learn/data-exploration
https://www.matillion.com/learn/blog/data-exploration
https://www.geeksforgeeks.org/what-is-data-exploration-and-its-process/
https://www.geeksforgeeks.org/what-is-data-exploration-and-its-process/
https://www.analyticsvidhya.com/blog/2016/01/guide-data-exploration/
https://www.simplilearn.com/data-exploration-article
https://www.keboola.com/blog/data-exploration-techniques
https://www.kaggle.com/code/pmarcelino/comprehensive-data-exploration-with-python
https://www.geeksforgeeks.org/exploratory-data-analysis-in-python/
https://www.analyticsvidhya.com/blog/2015/04/comprehensive-guide-data-exploration-sas-using-python-numpy-scipy-matplotlib-pandas/
https://www.analyticsvidhya.com/blog/2015/04/comprehensive-guide-data-exploration-sas-using-python-numpy-scipy-matplotlib-pandas/
https://www.omdena.com/blog/a-beginners-guide-to-exploratory-data-analysis-with-python
https://www.omdena.com/blog/a-beginners-guide-to-exploratory-data-analysis-with-python
https://hex.tech/blog/explore-data-with-python-and-pandas/

import numpy as np

Create example DataFrame with missing values
data = {'A': [1, 2, np.nan, 4],
 'B': [5, np.nan, 7, 8],
 'C': ['x', 'y', 'z', np.nan]}
df = pd.DataFrame(data)
print(df)

Techniques for Handling Missing Values (15 minutes)

• Objective: Learn and apply different methods for imputing missing values.
• Content:

o 1. Removing Missing Values:
▪ Definition: Removing rows or columns with missing values.
▪ Example:

Drop rows with missing values
df_dropped_rows = df.dropna()

Drop columns with missing values
df_dropped_cols = df.dropna(axis=1)

print("Dropped Rows:\n", df_dropped_rows)
print("Dropped Columns:\n", df_dropped_cols)

Mean/Median Imputation:

• Definition: Filling missing values with the mean or median of the column.
• Example:

Mean imputation
df['A'].fillna(df['A'].mean(), inplace=True)

Median imputation
df['B'].fillna(df['B'].median(), inplace=True)

print("Mean Imputation:\n", df)

3. Mode Imputation:

• Definition: Filling missing values with the mode (most frequent value) of the column.
• Example:

Mode imputation for categorical data
mode_value = df['C'].mode()[0]
df['C'].fillna(mode_value, inplace=True)

print("Mode Imputation:\n", df)

4. Interpolation:

• Definition: Estimating missing values based on the values of surrounding data.

• Example:

Interpolation
df_interpolated = df.interpolate()

print("Interpolated Data:\n", df_interpolated)

3. Writing Functions in Python (10 minutes)

• Objective: Learn how to create reusable functions for data handling and imputation tasks.
• Content:

o Function Definition:
▪ Syntax: How to define a function using def keyword.
▪ Example:

def impute_missing_values(df):
 """Impute missing values with mean for numerical columns and mode for categorical columns."""
 for column in df.columns:
 if df[column].dtype == 'object':
 mode_value = df[column].mode()[0]
 df[column].fillna(mode_value, inplace=True)
 else:
 mean_value = df[column].mean()
 df[column].fillna(mean_value, inplace=True)
 return df

df_imputed = impute_missing_values(df.copy())
print("Data After Imputation:\n", df_imputed)

Writing Functions for Simulations:

• Example Function to Simulate Random Data:
def simulate_random_data(size, mean=0, std=1):
 """Simulate random data with specified mean and standard deviation."""
 return np.random.normal(loc=mean, scale=std, size=size)

simulated_data = simulate_random_data(100, mean=5, std=2)
print("Simulated Data:\n", simulated_data[:10])

4. Performing Simulations (10 minutes)

• Objective: Understand how to perform simulations to generate data or test hypotheses.
• Content:

o 1. Simulating Data Distributions:
▪ Example:

import matplotlib.pyplot as plt

Simulate normal distribution data
data_normal = np.random.normal(loc=0, scale=1, size=1000)
plt.hist(data_normal, bins=30, edgecolor='k')
plt.title('Normal Distribution')

plt.show()

2. Bootstrapping:

• Definition: A resampling technique to estimate the distribution of a statistic.
• Example:

from sklearn.utils import resample

Original dataset
original_data = df['A'].dropna()

Bootstrapping
bootstrap_sample = resample(original_data, n_samples=len(original_data), replace=True)
print("Bootstrap Sample:\n", bootstrap_sample)

3. Monte Carlo Simulations:

• Definition: Using randomness to solve problems or simulate processes.
• Example:

def monte_carlo_simulation(num_trials):
 results = []
 for _ in range(num_trials):
 result = np.random.normal(loc=0, scale=1)
 results.append(result)
 return np.mean(results)

mean_result = monte_carlo_simulation(1000)
print("Mean Result of Monte Carlo Simulation:", mean_result)

5. Practical Examples and Q&A (5 minutes)

• Objective: Apply the concepts through practical examples and answer any questions.
• Content:

o Hands-On Exercise: Implement a function to handle missing values and perform
simulations on a sample dataset.

o Q&A Session: Address any questions and clarify concepts discussed during the lecture.

Key Takeaways

• Imputations: Techniques for handling missing values including mean, median, mode imputation,
and interpolation.

• Functions: How to write reusable functions in Python for data handling and simulations.
• Simulations: Performing simulations to generate data and test hypotheses.

Resources:
Writing Functions in Python: https://www.w3schools.com/python/python_functions.asp
https://www.geeksforgeeks.org/python-functions/ https://www.programiz.com/python-
programming/function https://www.datacamp.com/tutorial/functions-python-tutorial
Simulations: https://discovery.cs.illinois.edu/learn/Simulation-and-Distributions/Simple-Simulations-in-
Python/ https://realpython.com/simpy-simulating-with-python/

https://www.w3schools.com/python/python_functions.asp
https://www.geeksforgeeks.org/python-functions/
https://www.programiz.com/python-programming/function
https://www.programiz.com/python-programming/function
https://www.datacamp.com/tutorial/functions-python-tutorial
https://discovery.cs.illinois.edu/learn/Simulation-and-Distributions/Simple-Simulations-in-Python/
https://discovery.cs.illinois.edu/learn/Simulation-and-Distributions/Simple-Simulations-in-Python/
https://realpython.com/simpy-simulating-with-python/

Bootstrapping in Python: https://www.digitalocean.com/community/tutorials/bootstrap-sampling-in-
python https://carpentries-incubator.github.io/machine-learning-novice-python/07-
bootstrapping/index.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.bootstrap.html
Joining Dataframes in Pandas: https://www.datacamp.com/tutorial/joining-dataframes-pandas
Merging, Joining and Concatenating: https://www.geeksforgeeks.org/python-pandas-merging-joining-
and-concatenating/

https://www.digitalocean.com/community/tutorials/bootstrap-sampling-in-python
https://www.digitalocean.com/community/tutorials/bootstrap-sampling-in-python
https://carpentries-incubator.github.io/machine-learning-novice-python/07-bootstrapping/index.html
https://carpentries-incubator.github.io/machine-learning-novice-python/07-bootstrapping/index.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.bootstrap.html
https://www.datacamp.com/tutorial/joining-dataframes-pandas
https://www.geeksforgeeks.org/python-pandas-merging-joining-and-concatenating/
https://www.geeksforgeeks.org/python-pandas-merging-joining-and-concatenating/

