
Lecture 11 
 
DBSCAN, BIRCH, SOM 
 
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is a powerful and flexible 
clustering algorithm commonly used in data mining and machine learning. Unlike K-Means, which 
assumes that clusters are spherical and equally sized, DBSCAN can discover clusters of arbitrary shapes 
and is robust to noise in the data. It works by identifying dense regions of data points separated by 
sparser regions. Here's how DBSCAN works: 
 
1. Core Point: DBSCAN relies on two parameters: a distance metric (𝜀) and the minimum number of data 
points (MinPtsMinPts) required to form a dense region. A data point is considered a core point if there 
are at least MinPtsMinPts data points (including itself) within a distance of 𝜀 from it. 
 
2. Border Point: A data point is considered a border point if it is within 𝜀 distance from a core point but 
does not meet the MinPtsMinPts requirement itself. 
 
3. Noise Point: Data points that are neither core points nor border points are classified as noise points. 
 
4. Cluster Formation: DBSCAN starts by selecting an arbitrary data point. If it's a core point, a new cluster 
is created. The algorithm expands the cluster by adding all directly reachable core points to it. The 
algorithm continues to expand the cluster until no more core points can be added. If a border point is 
reached, it is added to the cluster as well, but the expansion of the cluster stops in that direction. The 
algorithm then selects another unvisited data point and repeats the process until all data points are 
visited. 
 
5. Handling Noise: Noise points are data points that do not belong to any cluster. They are often 
associated with outliers or noise in the dataset. 
 
Key Considerations: 
 

• The choice of 𝜀 and MinPtsMinPts is crucial. Smaller 𝜀 values result in more fine-grained clusters, 
while larger 𝜀 values may merge clusters. Setting MinPtsMinPts too low can lead to excessive 
noise, while setting it too high may result in large clusters. 

• DBSCAN is capable of handling clusters of different shapes, sizes, and densities. It can identify 
clusters within clusters (nested clusters). 

• The order in which data points are processed does not affect the final clustering result. 

• The number of clusters is not predetermined; DBSCAN can discover an arbitrary number of 
clusters based on the data's density distribution. 

• DBSCAN is less sensitive to the initial choice of parameters compared to K-Means. 

• It's suitable for both numerical and categorical data, with appropriate distance metrics. 

• DBSCAN is computationally efficient and can handle large datasets effectively. 
 
DBSCAN is a versatile clustering algorithm used in various applications, including anomaly detection, 
image segmentation, customer segmentation, and geographic data analysis. Its ability to uncover 
complex cluster structures makes it particularly valuable in situations where other clustering methods 
may struggle. 



An example of how to use the DBSCAN clustering algorithm in R. In this example, we'll generate 
synthetic data and apply DBSCAN to cluster the data points. For demonstration purposes, we'll use the 
popular dbscan package in R. To get started, make sure you have the dbscan package installed. You can 
install it using the following command if you haven't already: 
 
Now, let's create a synthetic dataset and perform DBSCAN clustering: 
 
# Load the dbscan library  

library(dbscan)  

# Generate synthetic data with two clusters and some noise  

set.seed(123)  

data <- rbind( matrix(rnorm(200, mean = c(2, 2), sd = 0.2), ncol = 2), 

# Cluster 1  

matrix(rnorm(200, mean = c(6, 6), sd = 0.2), ncol = 2), # Cluster 2  

matrix(rnorm(20, mean = c(4, 4), sd = 2), ncol = 2) # Noise  

)  

# Perform DBSCAN clustering  

dbscan_result <- dbscan(data, eps = 0.5, MinPts = 5)  

# Display cluster assignments 

cluster_assignments <- dbscan_result$cluster 

print(cluster_assignments)  

# Plot the data points colored by cluster  

plot(data, col = cluster_assignments, pch = 19, main = "DBSCAN 

Clustering Example", xlab = "X", ylab = "Y")  

legend("topright", legend = unique(cluster_assignments), col = 

1:max(cluster_assignments), pch = 19)  

 
In this code, we: Load the dbscan library. Generate a synthetic dataset with two distinct clusters and 
some noise points. Perform DBSCAN clustering on the synthetic data using the dbscan function. We 
specify the distance parameter (eps) and the minimum number of points for a cluster (MinPts). Display 
the cluster assignments. Create a scatter plot of the data points, with each point colored according to its 
assigned cluster. We also add a legend for cluster labels. 
 
When you run this code, you will see a scatter plot of the synthetic data points, each colored by its 
DBSCAN-assigned cluster label. The DBSCAN algorithm has effectively separated the two main clusters 
and identified the noise points as outliers. 
 
You can experiment with different parameter values, such as eps and MinPts, to see how they affect the 
clustering results and the identification of noise points. 
 
BIRCH, which stands for Balanced Iterative Reducing and Clustering using Hierarchies, is a hierarchical 
clustering algorithm designed for efficiently clustering large datasets with a focus on memory and speed 
efficiency. BIRCH is especially well-suited for datasets that do not fit entirely into memory, making it a 
scalable clustering technique. Here's how BIRCH works: 
 
Basic Procedure: 
Initialization: BIRCH begins by constructing a balanced tree structure called the CF (Clustering Feature) 
Tree. The CF Tree is used to represent the data distribution efficiently while minimizing memory usage. 



Clustering Features: BIRCH relies on a set of clustering features, which are summarized information 
about the data points in the dataset. Each data point contributes to the clustering features, which 
include the count of data points, the linear sum, and the squared sum of data points within a subcluster. 
These features are stored in the CF Tree. 
 
Insertion into the CF Tree: As data points are read sequentially, BIRCH inserts them into the CF Tree. The 
tree nodes maintain information about the current subcluster and its clustering features. 
 
Splitting and Merging: The CF Tree is updated dynamically as data points are inserted. When a node 
reaches its capacity limit, it is split into two subclusters. Subclusters that are close to each other may be 
merged to maintain a balanced tree structure. 
 
Global Clustering: Once all data points have been processed, BIRCH constructs global clusters by 
traversing the CF Tree, merging subclusters with similar clustering features and eliminating noise 
clusters. 
 
Key Considerations: 

• BIRCH is designed to be memory-efficient, as it stores summary information about data points in 
the CF Tree rather than the data points themselves. 

• The number of clusters is determined based on the properties of the CF Tree and the desired 
clustering threshold. BIRCH can adapt to the underlying data distribution. 

• BIRCH is useful for clustering large datasets where keeping the entire dataset in memory is not 
feasible. 

• BIRCH is sensitive to the choice of parameters, such as the branching factor of the CF Tree and 
the clustering threshold. 

• It is particularly effective in the preprocessing step for larger datasets before applying more 
detailed clustering algorithms, such as hierarchical or K-Means clustering. 

 
Applications: 
BIRCH is used in various applications, including text clustering, image segmentation, and data mining 
tasks where datasets are too large to fit in memory. It provides a memory-efficient way to perform 
preliminary clustering on such datasets, allowing for further analysis and exploration. 
 
The R language does not have a built-in package for BIRCH clustering. The BIRCH algorithm is not as 
commonly implemented in R as some other clustering algorithms like K-Means or hierarchical clustering. 
However, I can provide you with a high-level description of how to use BIRCH clustering and the kind of 
steps you would follow if you were to implement it yourself in R. 
 
Data Preparation: First, you would need to load and prepare your dataset. Ensure that your data is in a 
suitable format and that you've identified the features to cluster on. 
 
BIRCH Parameters: Define the parameters for BIRCH, which typically include the branching factor (the 
maximum number of subclusters in each node) and the clustering threshold (a measure of cluster quality 
or similarity that determines whether two subclusters should be merged). You need to determine 
appropriate values for these parameters based on your data and clustering goals. 
 



BIRCH Tree Construction: Implement the logic to construct the BIRCH tree data structure. As data points 
are read sequentially from your dataset, insert them into the tree, and handle node splitting and 
merging as necessary to maintain a balanced tree structure. 
 
Global Clustering: Once you've inserted all data points and constructed the BIRCH tree, you would 
traverse the tree to perform global clustering. This involves merging subclusters with similar features and 
eliminating noise clusters. 
 
Cluster Visualization and Analysis: After the clustering is complete, you can visualize and analyze the 
resulting clusters as needed for your specific application. 
 
For those who want to experiment with BIRCH clustering, it's worth exploring whether other machine 
learning libraries or tools support BIRCH. Available R packages and their features are being updated all 
the time. 
 
Self-Organizing Maps (SOM), also known as Kohonen maps, are a type of artificial neural network that is 
used for clustering, visualization, and dimensionality reduction of high-dimensional data. SOMs are 
particularly useful for identifying patterns and relationships in data. Here's how Self-Organizing Maps 
work: 
 
Basic Structure: A SOM consists of a grid of nodes, typically organized as a two-dimensional grid, but 
other arrangements are possible. Each node in the grid is associated with a weight vector of the same 
dimension as the input data. These weight vectors are initialized randomly or with small random values. 
SOMs are unsupervised learning models, meaning they do not require labeled training data. They learn 
from the input data without external guidance. 
 
Learning Process: Initialization: Start by initializing the SOM with a grid of nodes and random weight 
vectors. 
 
Input Data Presentation: For each input data point in your dataset, the SOM finds the node with the 
closest weight vector to the input data point. This is done by computing the distance (e.g., Euclidean 
distance) between the input data point and the weight vectors of all nodes. 
 
Winner Node Selection: The node with the closest weight vector is known as the "winner" or "best-
matching unit" (BMU). The BMU is the node whose weight vector is most similar to the input data point. 
 
Weight Vector Update: Update the weight vectors of the BMU and its neighboring nodes. The weight 
vectors of nodes near the BMU are adjusted to be more similar to the input data point. The magnitude 
of adjustment decreases with the distance from the BMU. This process encourages nearby nodes to 
adapt their weight vectors to represent similar data patterns. 
 
Iterative Learning: Repeat steps 3 and 4 for each input data point in your dataset. This process may 
involve multiple iterations or epochs. 
 
Visualization and Clustering: After training, SOMs can be used for visualization, clustering, or 
dimensionality reduction. Nodes with similar weight vectors are more likely to be close to each other in 
the SOM grid, making them candidates for forming clusters. 
 



Key Considerations: 

• SOMs are capable of revealing underlying structures and relationships in the data, making them 
suitable for exploratory data analysis and visualization. 

• The size and topology of the SOM grid are crucial parameters that influence the quality of the 
clustering and visualization. Smaller grids may oversimplify the data, while larger grids can 
overfit. 

• SOMs can be used in a wide range of applications, including image processing, data mining, and 
pattern recognition. 

• SOMs can be sensitive to the initialization of weight vectors, which may affect the quality of the 
learned representation. 

• SOMs can be adapted for online learning or batch learning, depending on the specific problem. 
 
Applications: Self-Organizing Maps find applications in a variety of fields, including data visualization, 
image analysis, speech recognition, and feature extraction. They are particularly valuable when dealing 
with high-dimensional data and exploring complex patterns within it. 
 
A simple example of creating and training a Self-Organizing Map (SOM) using the kohonen package in R. 
In this example, we'll use a synthetic dataset to demonstrate how a SOM can help identify clusters and 
visualize the data. First, make sure you have the kohonen package installed. You can install it using the 
following command if you haven't already: 

 
Now, let's create a synthetic dataset, train a SOM, and visualize the results: 
 
# Load the kohonen library  

library(kohonen)  

# Create a synthetic dataset  

set.seed(123)  

data <- matrix(rnorm(200, mean = c(0, 0), sd = 1), ncol = 2)  

data <- rbind(data, matrix(rnorm(200, mean = c(4, 4), sd = 1), ncol = 

2))  

# Normalize the data  

data <- scale(data)  

# Define the SOM grid dimensions  

grid_rows <- 10  

grid_cols <- 10  

# Create and initialize the SOM  

som_grid <- somgrid(xdim = grid_rows, ydim = grid_cols, topo = 

"rectangular")  

som_model <- som(data, grid = som_grid, rlen = 100, alpha = c(0.05, 

0.01))  

# Plot the SOM results  

plot(som_model, type = "property", property = 1, main = "SOM 

Clustering Example") 

plot(som_model, type = "mapping", pchs = 20, main = "SOM Clustering 

Example")  

 
In this R code, we: Load the kohonen library, which provides functions for working with SOMs. Create a 
synthetic dataset with two clusters. The dataset consists of 400 data points (200 in each cluster) with 
different means and standard deviations. Normalize the data to have a mean of 0 and a standard 



deviation of 1. Define the dimensions of the SOM grid. In this example, we use a 10x10 grid. Create and 
initialize the SOM using the somgrid function to specify the grid dimensions. We then train the SOM 
using the som function. The rlen parameter controls the number of training iterations, and alpha 
controls the learning rate decay. Finally, we visualize the results of the SOM. The first plot displays cluster 
properties, while the second plot shows data points mapped onto the SOM grid. 
When you run this code, you will see two plots. The first plot represents the SOM's cluster properties, 
showing how the SOM has grouped data points into clusters. The second plot displays data points as 
they are mapped onto the SOM grid, helping you visualize the relationships between data points. 
 
You can experiment with different datasets, grid dimensions, and training parameters to see how the 
SOM adapts to different data distributions. 
 
Resources:  

1. https://www.geeksforgeeks.org/dbscan-clustering-in-r-programming/# 
2. http://www.sthda.com/english/wiki/wiki.php?id_contents=7940 
3. https://rpubs.com/datalowe/dbscan-simple-example 
4. https://www.datanovia.com/en/lessons/dbscan-density-based-clustering-essentials/ 
5. https://www.kaggle.com/code/pmcgovern/dbscan-example-in-r 
6. https://rdrr.io/cran/stream/man/DSC_BIRCH.html 
7. https://medium.com/@noel.cs21/balanced-iterative-reducing-and-clustering-using-heirachies-

birch-5680adffaa58 
8. https://www.geeksforgeeks.org/ml-birch-clustering/ 
9. https://www.polarmicrobes.org/tutorial-self-organizing-maps-in-r/ 
10. https://www.r-bloggers.com/2014/02/self-organising-maps-for-customer-segmentation-using-r/ 
11. https://rpubs.com/AlgoritmaAcademy/som 
12. https://raraasnawi.medium.com/self-organizing-map-som-with-rstudio-81b5c5713f54 
13. https://en.proft.me/2016/11/29/modeling-self-organising-maps-r/ 

 
 
Lecture 12 
 
Fuzzy C-Means 
Mean Shift Clustering 
OPTICS 
 
Fuzzy C-Means (FCM) is a clustering algorithm that extends the traditional K-Means algorithm by 
allowing data points to belong to multiple clusters, with degrees of membership represented as fuzzy 
values between 0 and 1. FCM is particularly useful when data points do not clearly belong to a single 
cluster but may have partial membership in multiple clusters. Here's how Fuzzy C-Means clustering 
works: 
 
Basic Procedure: 
Initialization: Start by specifying the number of clusters (𝑘) and the fuzziness parameter (𝑚). The 
fuzziness parameter (𝑚) determines the degree of fuzziness and typically has a value greater than 1. 
 
Random Initialization: Initialize the cluster centroids randomly. 
 

https://www.geeksforgeeks.org/dbscan-clustering-in-r-programming/
http://www.sthda.com/english/wiki/wiki.php?id_contents=7940
https://rpubs.com/datalowe/dbscan-simple-example
https://www.datanovia.com/en/lessons/dbscan-density-based-clustering-essentials/
https://www.kaggle.com/code/pmcgovern/dbscan-example-in-r
https://rdrr.io/cran/stream/man/DSC_BIRCH.html
https://medium.com/@noel.cs21/balanced-iterative-reducing-and-clustering-using-heirachies-birch-5680adffaa58
https://medium.com/@noel.cs21/balanced-iterative-reducing-and-clustering-using-heirachies-birch-5680adffaa58
https://www.geeksforgeeks.org/ml-birch-clustering/
https://www.polarmicrobes.org/tutorial-self-organizing-maps-in-r/
https://www.r-bloggers.com/2014/02/self-organising-maps-for-customer-segmentation-using-r/
https://rpubs.com/AlgoritmaAcademy/som
https://raraasnawi.medium.com/self-organizing-map-som-with-rstudio-81b5c5713f54
https://en.proft.me/2016/11/29/modeling-self-organising-maps-r/


Membership Assignment: For each data point, calculate its degree of membership to each cluster. This is 
done by computing the fuzzy membership value for each cluster based on the distance between the data 
point and the cluster's centroid. A common method for computing the fuzzy membership value is using 
the Euclidean distance and the fuzzy c-means formula: 
 

𝜇𝑖𝑗 = (∑(
𝑑𝑖𝑗

𝑑𝑖𝑘
)

2
𝑚−1

𝑘

𝑘=1

)

−1

 

Where: 
𝜇𝑖𝑗  is the membership of data point 𝑖 to cluster 𝑗. 

𝑑𝑖𝑗  is the Euclidean distance between data point 𝑖 and the centroid of cluster 𝑗. 

𝑑𝑖𝑘  is the Euclidean distance between data point 𝑖 and the centroid of cluster 𝑘. 
𝑚 is the fuzziness parameter. 
 
Update Cluster Centers: Calculate new cluster centroids based on the fuzzy memberships. The centroids 
are determined as a weighted average of all data points, with weights given by the fuzzy memberships. 
 
Convergence Check: Check if the algorithm has converged by comparing the new cluster centroids to the 
previous ones. If the centroids remain largely unchanged or the change is smaller than a predefined 
threshold, the algorithm converges. 
 
Termination: If the algorithm has converged, terminate. If not, repeat steps 3-5 until convergence. 
 
Key Considerations: 

• FCM allows data points to have partial membership in multiple clusters, providing a more flexible 
approach to clustering when compared to K-Means. 

• The fuzziness parameter (𝑚) determines the degree of fuzziness. A higher 𝑚 results in more 
restrictive memberships, while a lower 𝑚 allows data points to have more equal memberships in 
multiple clusters. 

• The number of clusters (𝑘) is a parameter that needs to be defined in advance, but the algorithm 
can be sensitive to the initial random cluster centroids. 

• FCM may be more computationally intensive than K-Means due to the additional computations 
required for membership calculations. 

 
Applications: FCM is used in various applications, including image segmentation, pattern recognition, 
medical diagnosis, and customer segmentation. It is particularly valuable in situations where data points 
exhibit partial memberships or when hard assignments to clusters are inadequate. 

  
An example of Fuzzy C-Means (FCM) clustering in R using the e1071 package. In this example, we 

will use synthetic data and apply FCM to group data points into fuzzy clusters. We'll also visualize the 
results. First, make sure you have the e1071 package installed. You can install it using the following 
command if you haven't already: 

 
Now, let's create a synthetic dataset and perform Fuzzy C-Means clustering: 
 
# Load the e1071 library  

library(e1071)  



# Generate synthetic data  

set.seed(123)  

data <- matrix(rnorm(200, mean = c(2, 2), sd = 0.2), ncol = 2)  

# Define the number of clusters (k) and fuzziness parameter (m)  

k <- 3  

m <- 2 # Fuzziness parameter  

# Perform Fuzzy C-Means clustering  

fcm_result <- cmeans(data, centers = k, m = m)  

# Extract cluster assignments  

cluster_assignments <- t(fcm_result$membership)  

# Plot the data points with fuzzy cluster memberships  

plot(data, col = cluster_assignments, pch = 19, main = "Fuzzy C-Means 

Clustering Example", xlab = "X", ylab = "Y")  

# Add cluster centers as points  

points(fcm_result$centers, col = 1:k, pch = 3)  

legend("topright", legend = 1:k, col = 1:k, pch = 3, title = "Cluster 

Centers")  

 
In this code, we: Load the e1071 library, which provides the cmeans function for Fuzzy C-Means 
clustering. Generate a synthetic dataset with one cluster using random data. Define the number of 
clusters (𝑘) and the fuzziness parameter (𝑚). Perform Fuzzy C-Means clustering using the cmeans 
function, specifying the data, the number of clusters, and the fuzziness parameter (𝑚). Extract the fuzzy 
cluster assignments from the result. Create a scatter plot of the data points with colors representing 
fuzzy cluster memberships and add the cluster centers as points. 
 
When you run this code, you will see a scatter plot of the synthetic data points, with colors representing 
fuzzy cluster memberships. The cluster centers are marked with special symbols (in this case, "3" for 
three clusters). The FCM algorithm has assigned fuzzy memberships to each data point, allowing them to 
belong to multiple clusters with varying degrees of membership. 
 
You can experiment with different values of 𝑘 and 𝑚 to explore how they affect the FCM clustering 
results and the degree of fuzziness in the memberships. 
 
Mean Shift clustering is a non-parametric and density-based clustering algorithm used to discover 
clusters in data by locating the modes (peaks) of the data's probability density function (PDF). It is 
particularly effective for datasets with irregular shapes and varying densities. Here's how Mean Shift 
clustering works: 
 
Basic Procedure: 
Kernel Density Estimation (KDE): Start by performing kernel density estimation on the dataset. This step 
involves creating a smoothed estimate of the data's underlying PDF. Each data point contributes a kernel 
(usually a Gaussian) to the estimation. The sum of these kernels creates the overall PDF. 
 
Mean Shift Vector: For each data point in the dataset, calculate a mean shift vector that points toward a 
mode of the PDF. The mean shift vector is computed as a weighted average of the vectors from the data 
point to all other data points. The weights are determined by the kernel function. 
 



Mean Shift Iteration: Update the position of each data point by shifting it in the direction of the mean 
shift vector. The amount of the shift is determined by the kernel bandwidth (bandwidth parameter). This 
process iteratively shifts data points until they converge to a mode of the PDF. 
 
Clustering: After convergence, data points that end up close to the same mode are assigned to the same 
cluster. The modes represent the cluster centers. 
 
Label Propagation: Assign a label to each data point based on the cluster it belongs to. Data points that 
are close to the same cluster center are assigned the same label. 
 
Key Considerations: 

• Mean Shift is a mode-seeking algorithm, which means it seeks the modes (peaks) of the data's 
PDF. It can identify clusters with arbitrary shapes and densities. 

• The bandwidth parameter is a crucial hyperparameter that affects the size of the search window 
for modes. A smaller bandwidth focuses on finer details, while a larger bandwidth creates more 
extensive clusters. 

• Mean Shift is non-parametric, so you don't need to specify the number of clusters in advance. 

• It may require multiple iterations to converge to the modes. Convergence can be accelerated by 
setting a maximum number of iterations or a small convergence threshold. 

• Outliers may be detected as separate clusters if they are far from any mode. 
 
Applications: Mean Shift clustering is used in various applications, including image segmentation, object 
tracking in computer vision, and customer segmentation in marketing. It is particularly valuable when 
dealing with complex, non-linear data structures and non-convex clusters. 
 
Advantages: 

• Effective at identifying clusters with irregular shapes and varying densities. 

• No need to specify the number of clusters in advance. 
 
 
Disadvantages: 

• Can be computationally intensive, especially for large datasets. 

• Sensitive to the choice of the bandwidth parameter, which may require experimentation to find 
the optimal value. 

• Outliers can be problematic if they are distant from any mode, as they may be assigned to their 
own clusters. 

 
An example of Mean Shift clustering in R using the meanshift package. In this example, we'll generate 
synthetic data and apply Mean Shift clustering to discover clusters in the data. We'll also visualize the 
results. First, make sure you have the meanshift package installed. You can install it using the following 
command if you haven't already: 

 
Now, let's create a synthetic dataset and perform Mean Shift clustering: 
 
# Load the meanshift library  

library(meanshift)  

# Generate synthetic data  

set.seed(123)  



centers <- matrix(c(1, 1, 3, 3, 6, 2), ncol = 2)  

data <- rbind(matrix(rnorm(100, mean = centers[1,], sd = 0.6), ncol = 

2), # Cluster 1  

matrix(rnorm(100, mean = centers[2,], sd = 0.6), ncol = 2), # Cluster 2  

matrix(rnorm(100, mean = centers[3,], sd = 0.6), ncol = 2)) # Cluster 3  

# Perform Mean Shift clustering  

ms_result <- meanshift(data, bandwidth = 1)  

# Extract cluster centers and labels  

cluster_centers <- ms_result$cluster_centers  

cluster_labels <- ms_result$cluster_labels  

# Get the number of clusters  

n_clusters <- length(unique(cluster_labels))  

# Display cluster centers and data points  

print("Cluster Centers:")  

print(cluster_centers)  

print(paste("Number of Clusters:", n_clusters))  

# Visualize the clustering results  

plot(data, col = cluster_labels, pch = 19, main = "Mean Shift 

Clustering Example", xlab = "X", ylab = "Y")  

points(cluster_centers, col = 1:n_clusters, pch = 3)  

legend("topright", legend = 1:n_clusters, col = 1:n_clusters, pch = 3, 

title = "Cluster Centers")  

 
In this R code, we: Load the meanshift library, which provides Mean Shift clustering. Generate a synthetic 
dataset with three clusters using random data. Specify the bandwidth parameter (bandwidth) to control 
the size of the search window for modes. Perform Mean Shift clustering using the meanshift function, 
specifying the data and bandwidth. Extract the cluster centers and cluster labels. Get the number of 
clusters. Display the cluster centers and the number of clusters. Visualize the clustering results by 
plotting the data points with different colors for each cluster and marking the cluster centers with "x." 
 
When you run this code, you will see a scatter plot of the synthetic data points, with different colors 
representing the identified clusters. The "x" markers represent the cluster centers discovered by Mean 
Shift clustering. You can experiment with different synthetic datasets and bandwidth values to observe 
how Mean Shift clustering adapts to various data distributions and densities. 
 
OPTICS, which stands for Ordering Points To Identify the Clustering Structure, is a density-based 
clustering algorithm used for discovering clusters and hierarchical structures in datasets. It was designed 
to address some limitations of traditional density-based clustering algorithms like DBSCAN. Here's how 
OPTICS works: 
 
Basic Procedure: 
Reachability Distance: OPTICS uses the concept of "reachability distance" to measure the density of data 
points. The reachability distance of a data point A with respect to a data point B is the distance between 
A and B, provided that B is a core point (a point with a sufficient number of neighboring points within a 
specified radius). If B is not a core point, the reachability distance is defined as an undefined or "infinite" 
value. 
 



Core Distance: For each data point, the core distance is defined as the distance to its nearest neighbor 
that has at least a specified number of data points within its radius (a user-defined parameter known as 
"MinPts"). 
 
Ordering of Data Points: OPTICS processes data points and computes their reachability distances and 
core distances. It orders data points based on their reachability distances, forming a reachability plot. 
This plot reveals a density-based hierarchical structure. 
 
Cluster Identification: By examining the reachability plot, you can identify clusters of different densities. 
Clusters are formed based on local maxima in the reachability distances. The local maxima correspond to 
cluster centers. 
 
Extracting Hierarchical Clusters: The reachability plot provides a hierarchical structure, allowing you to 
extract clusters at various density levels, from dense core clusters to less dense clusters. 
 
Key Considerations: 

• OPTICS is similar to DBSCAN in that it groups data points based on density. However, it doesn't 
require you to specify the number of clusters in advance. 

• OPTICS provides a more comprehensive view of the data's hierarchical clustering structure by 
identifying clusters of varying densities and shapes. 

• The MinPts parameter is essential in OPTICS. It defines the minimum number of data points 
required within a radius for a point to be considered a core point. 

• Noise points, which do not belong to any cluster, are also identified in the output of OPTICS. 

• OPTICS is particularly useful for datasets with varying densities and complex hierarchical 
structures. 

 
Applications: OPTICS has applications in various fields, including data mining, image analysis, and spatial 
databases. It is valuable when you want to discover clusters in data without needing to specify the 
number of clusters in advance and when you are interested in understanding the hierarchical 
relationships between clusters of different densities. 
 
Advantages: 

• No need to predefine the number of clusters. 

• Reveals hierarchical structures in the data. 

• Suitable for datasets with varying densities. 
 
Disadvantages: 

• Can be computationally intensive, especially for large datasets. 

• Sensitivity to parameter settings, such as MinPts and radius. 

• Reachability plots can be challenging to interpret in some cases. 
 
OPTICS clustering in R is not available as a built-in function in standard R packages. However, you can use 
external libraries or tools to perform OPTICS clustering in R. Here, I will explain the high-level steps to 
use the dbscan package, which includes an OPTICS implementation, to perform clustering. 
 
Here's a high-level overview of how you would use the dbscan package for OPTICS clustering: 
 



Load Data: Prepare your dataset. For this example, we'll assume you have a dataset in the form of a data 
frame named data. 
 
Optimize Parameters: OPTICS requires tuning parameters, such as eps (the maximum distance between 
two samples for one to be considered as in the neighborhood of the other) and MinPts (the minimum 
number of data points to form a dense region). You need to estimate these parameters based on your 
dataset. 
 
Run OPTICS: Use the dbscan function from the dbscan package to perform OPTICS clustering on your 
dataset. You can set the eps and MinPts parameters accordingly. 
 
library(dbscan)  

# Example parameter values; adjust according to your data  

eps <- 0.5  

MinPts <- 5  

# Run OPTICS clustering  

optics_result <- dbscan(data, eps = eps, MinPts = MinPts, method = 

"optics")  

 
Extract Clusters: You can extract the clusters from the optics_result object. This object contains 
information about the clusters and the core points identified by OPTICS. 
 
clusters <- optics_result$cluster  

 
Visualization: You can visualize the results as needed, e.g., by creating scatter plots with different colors 
for each cluster. 
 
Remember that parameter tuning, especially for eps and MinPts, is crucial in OPTICS clustering. You may 
need to experiment with different values to identify meaningful clusters in your dataset. 
 
Please note that this example provides a general overview of the steps, and you should adapt the 
parameters and the data preparation steps to your specific dataset and clustering goals. The quality of 
the results will depend on the data and parameter settings. 
 
Resources: 

1. https://cran.r-project.org/web/packages/ppclust/vignettes/fcm.html 
2. https://rpubs.com/rahulSaha/Fuzzy-CMeansClustering 
3. https://www.kaggle.com/code/ysthehurricane/fuzzy-c-means-clustering-tutorial-r 
4. https://www.datanovia.com/en/lessons/fuzzy-clustering-essentials/cmeans-r-function-compute-

fuzzy-clustering/ 
5. http://meanmean.me/meanshift/r/cran/2016/08/28/meanShiftR.html 
6. http://cran.nexr.com/web/packages/MeanShift/vignettes/MeanShift-clustering.html 
7. https://rpubs.com/AnnYang/389433 
8. https://www.geeksforgeeks.org/ml-mean-shift-clustering/ 
9. https://medium.com/@shruti.dhumne/mean-shift-clustering-a-powerful-technique-for-data-

analysis-with-python-f0c26bfb808a 
10. https://www.kaggle.com/code/pmcgovern/optics-example-in-r 
11. https://datarundown.com/optics-clustering/ 
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https://www.datanovia.com/en/lessons/fuzzy-clustering-essentials/cmeans-r-function-compute-fuzzy-clustering/
https://www.datanovia.com/en/lessons/fuzzy-clustering-essentials/cmeans-r-function-compute-fuzzy-clustering/
http://meanmean.me/meanshift/r/cran/2016/08/28/meanShiftR.html
http://cran.nexr.com/web/packages/MeanShift/vignettes/MeanShift-clustering.html
https://rpubs.com/AnnYang/389433
https://www.geeksforgeeks.org/ml-mean-shift-clustering/
https://medium.com/@shruti.dhumne/mean-shift-clustering-a-powerful-technique-for-data-analysis-with-python-f0c26bfb808a
https://medium.com/@shruti.dhumne/mean-shift-clustering-a-powerful-technique-for-data-analysis-with-python-f0c26bfb808a
https://www.kaggle.com/code/pmcgovern/optics-example-in-r
https://datarundown.com/optics-clustering/


12. https://www.geeksforgeeks.org/ml-optics-clustering-explanation/ 
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