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Introduction (Statement of the Problem) 

 This analysis brings together several datasets for exploration. The primary dataset is 

described in Csatho, et al. (2014). She and her colleagues bring together the data from several 

NASA laser altimetry missions obtained via satellite and some airborne overflights. These 

datasets are combined and processed together to provide predictions for 1-km2 patches of the 

Greenland Ice Sheet (GrIS) for elevation. The data is further processes to extract known factors 

that contribute to variations in height such as snowfall and snowmelt, firn compaction, crustal 

rebound, etc., leaving behind an estimate for how the ice thickness is changing over time. Since 

the 2014 article, the dataset has been extended to include through the end of the ICESat-1 

mission in spring of 2017, these tiles cover the time frame 1994 to 2017. The dataset also 

contains reference elevation (as of 2006) which will also be modeled as part of this analysis. 

Figure 1 (bottom image) shows the regions to be analyzed (full maps of Greenland from which 

these were taken are included in the Appendix as Figure 1A). Figure 2 shows the map of 

Greenland with red dots overlaid for each location a time series occurs in the Csatho dataset. 

 In addition, for comparison, the data will be compared to Greenland drainage basins 

(Mouginot & Rignot, 2019) to determine if ice loss patterns align with expectations from 

drainage basin flow speeds. Figure 1 (top image) shows the region of analysis (the full map of 

Greenland is included in the Appendix as Figure 2A). All the analysis presented here was done in 

the R programming language unless otherwise noted. 

 The question being asked is to what extent the dynamic ice loss is associated with 

geographical features such as elevation, and drainage basins, or other environmental phenomena 

such as ice velocity flow speeds on the Greenland ice sheet. 

 



 

Exploratory Data Analysis 

 In preparation for modeling, a brief analysis of the dataset was undertaken to determine 

what cleaning might have to be done prior to modeling. The initial statistical summary of the 

dynamic ice loss variable is shown in the Table 1.  

Figure 1. The image shows the regions in Greenland to be analyzed in the northern-most portion 

of Greenland, the locations of Tiles 30-36 from the Csatho dataset and the Mouginot & Rignot 

drainage basins. The brown dots in the top image are glacier outlets. The blue dots in the bottom 

image are also glacier outlets. The high flow areas in the top image are in dark blue, while lower 

flow basins are in light blue. The red lines mark the bounding boxes of the Tiles in the Csatho 

dataset. 

 

 



Table 1. A statistical summary table of the dynamic ice loss variable from the Csatho dataset on 

Tiles 30-36, in meters. 

Min. 1st Qu. Median Mean 3rd Qu. Max. St.Dev. 

-14634.129 0.032 0.469 0.284 1.477 6006.761 84.358 

 

 As one can see from the data, the middle half of the dataset only spans a range of 1.445 

m, while the minimum and maximum values are a hundred times that size. While the standard 

deviation is affected by the presence of such extreme outliers, the minimum is 173 standard 

deviation from the mean, while the maximum is 71 standard deviations from the mean. Given the 

size of the dataset on these tiles of 66,195 observations, this size of extreme outliers is highly 

unlikely due to just random chance.  Given the general limitations of laser altimetry data on 

steep-sloped terrain (Csatho, Schenk, Veen, & Angelen, 2014), it’s highly likely that these 

outcomes are derived from measurement errors. Indeed, the depth of the Greenland ice sheet is 

around 3 km, a gain of 6 km (the maximum) or a loss of 14 km (minimum) is physically 

impossible. In an effort to err on the size of conservatively keeping as many values as possible, 

however, a determination was made to trim the data around the 5th standard deviation from the 

mean (approximately ±400 m based on the initial statistics). One would expect that some 

extreme values would exist in the data just due to random chance, but this trim would remove the 

most obviously erroneous values, while still maintaining the possibility of limiting the reduction 

of statistical variability. The data is not normally distributed, so maintaining some relatively large 

outliers should also serve to maintain the character of the distribution. The statistical summary of 

the remaining data after trimming the most extreme outliers is shown in Table 2. Forty 

observations were removed in the trimming, leaving 66,155 observations. Based on the new 

statistics, the extremes are approximately 40 standard deviations from the mean (based on the 





above zero (the reference year is 2006), suggesting that the region may be losing as much ice as 

it gains, or else, is very slightly gaining mass.  Since other research, including Csatho, et al. 

(2014) indicates that the island as a whole is losing mass, this is interpreted as a local effect. 

Table 3 shows the counts of observations on each tile by year. 

 In addition to looking at the dataset overall, some selected time series were examined to 

see the behavior in selected locations. An example time series plot is shown in Figure 6. The 

time series plotted is the longest time series on the selected tiles (39 observations). It appears to 

about what one might expect from the overall pattern of the data in Figures 3-5.  

Figure 3. The graph shows a histogram of dynamic ice loss, with the x-axis trimmed to -15 to 15 

m. The overwhelming majority of the data set is in this range of values. While the true 

distribution extends quite outside this range, the trimmed values represent less than 1% of data in 

Tiles 30-36. 

 

Figure 4. This graph is a comparative boxplot of the dynamic ice loss over the Tiles 30-36. As 

with the histogram, this x-axis has been trimmed to same range, -15 to 15 m. The tile numbers 

are noted on the vertical axis. As indicated by the histogram, all the tiles show a relatively small, 

slightly positive range, for most of the data with extreme outliers on both sides of the distribution 

across all regions. 



 

Figure 5. The comparative boxplot shows the range of the data available on Tiles 30-36 

separated by year, spanning 1994 to 2017. As with the previous graphs, the x-axis has been 

trimmed to -15 to 15 m. The counts of observations varies greatly from year to year. The year 

1996 appears to be the only year showing general loss, however, the number of observations 

from this year is comparatively small. 

 

Figure 6. The plotted points in black dots are the observations from the selected time series 

(from Tile 31). The red curve is a LOESS interpolation of the trend indicate a slight gain in ice 

depth over time. The grey region is the bounds on the LOESS model error. 



 

 Finally, the reference elevation data was modeled to produce an elevation map of the 

region for comparison. Models were constructed using both LOESS and Gaussian Process 

Regression (kriging). These elevation models are shown in Figures 7 and 8. As you can see from 

the graphs, the LOESS model is much smoother, but tends to run off to large values where data is 

unavailable. The Gaussian process model is more responsive to local changes and produces a 

model with more elevation changes throughout the region. I included both types of models here 

since the dynamic ice loss was also modeled with both types of processes. It will be interesting to 

compare whether the ice loss trends are as dramatically different as the corresponding elevation 

models. 

Figure 7. This image shows a LOESS elevation model on Tiles 30-36. Data is missing from the 

bottom left corner (this represents Tile 29 in the dataset which was not included) and it shows the 

effect of the local polynomial model tending toward infinity outside the range of local data. The 

elevation model was trimmed to the land area of Greenland, and the x- and y-axis values were 

converted from UTM-24 (in the Csatho dataset) to degrees for plotting in a stereographic 

projection. This model used a 30% span. 



 

Figure 8. The Gaussian Process (kriging) model of Greenland elevation data over Tiles 30-36. 

This is a much more dynamic model than the LOESS model with relatively more elevation 

changes as it is more responsive to local changes. As with the LOESS model, the predictions 

were trimmed to cover only the land area of Greenland after modeling, and the coordinates 

converted to Stereographic projection for plotting. 

 

 



Table 3. The table shows the number of observations per tile per year. The years that have 

observations on every tile in the range are 2003-2009, and 2013. 

Year/Tile 30 31 32 33 34 35 36 

1994 110 97 169 0 3 0 0 

1996 0 38 0 0 0 0 0 

1997 115 125 65 7 0 0 0 

1999 114 615 212 31 18 0 0 

2002 0 306 0 6 0 0 0 

2003 1609 2599 1991 313 340 28 301 

2004 3474 3685 3125 499 499 68 495 

2005 3366 2949 3104 435 462 69 500 

2006 3323 2926 2983 377 430 53 434 

2007 2240 1872 2068 284 339 54 270 

2008 2546 1927 2213 320 367 46 367 

2009 1582 1237 1554 139 186 13 126 

2010 0 6 0 0 0 0 0 

2011 87 186 180 8 0 0 0 

2012 616 307 471 26 71 0 0 

2013 89 283 227 74 2 4 49 

2014 21 124 325 37 24 0 5 

2015 61 116 200 13 0 0 1 

2017 50 91 188 10 25 0 0 

 

 

Modeling Approaches (Purpose of the Research) 

 To understand the dynamic ice loss (or gain) over the northern region of Greenland, the 

data was separated into yearly datasets (the years are noted in Figure 5’s vertical axis). Not all 

years in the range had observations, and some of the years that did have observations only had a 

small number of observations from one or two tiles. 

 LOESS models are built from local polynomials using (in most cases) 30% of the 

available data from that year (some smaller years required me to use 50% because the number of 

observations was too small to fit a model with the preferred span). One limitation of LOESS 

models, is that the models constructed in most R packages supports interpolation only, not 

extrapolation, so models are limited to the region in which data occurs (although for the two-



dimensional model this is constrained by the minimum and maximum in x and y independently 

providing for a rectangular model region). The LOESS models in this analysis were created from 

the {tgp} package. 

 Gaussian process models from the {kernlab} package were used to construct the GP 

models of dynamic ice loss (as with the elevation models).  The {kernlab} package, however, 

does not include uncertainty calculations for the model in the model output, so {RobustGASP} 

was used for some uncertainty modelling. However, {kernlab} was able to handle larger dataset 

than the primary GP model {RobustGASP}, so larger yearly sets had to be subdivided and retiled 

to obtain model errors. One advantage of Gaussian process models is that they do permit 

extrapolation beyond the range of the available data, and the extrapolation, unlike with a 

polynomial model that trends off to infinity, trends to the mean of the observations. This will be 

an important consideration in years where there is relatively little data to model. Years like 2010 

and 1996 have particularly limited data (as shown in Table 3.) 

 

Results of Dynamic Ice Loss Analysis (Research and Methodologies) 

 Models of the dynamic ice loss (relative to 2006) were constructed and a comparison of 

the LOESS and Gaussian process models from selected years (2003, 2008, 2013) are shown in 

Figures 9, 10 and 11. The LOESS model, as we saw with the elevation model, shows a more 

gently sloping terrain, while the Gaussian process model shows more dynamic elevation 

changes. Similar effects are seen in the dynamic ice loss models.  In 2003, this is prior to the 

reference year, so positive (blue) values indicate that there was ice loss between this time and 

2006, and red indicates areas that are lower in 2003 compared to 2006 and so indicate ice gain 

going forward in time. 



 Figure 12 shows the relationship between the elevation model and the dynamic ice loss 

from 2013, seven years after the reference elevations. Visually, there does not appear to be a 

strong relationship between elevation in this region and ice loss, which some low-lying regions 

showing gains while other low lying regions showing losses, and higher elevation regions 

showing more stability. 

 Figure 13 compares the Gaussian process model of the 2013 dynamic ice loss to the 

drainage basin data (Mouginot & Rignot, 2019). This visual comparison does suggest a possible 

relationship between faster flowing drainage basins and areas of ice loss in this region. Figure 14 

shows a similar comparison with ice velocity data from (Solgaard, et al., 2021) covering the 

years 2016 to 2021. Both comparison such similar conclusions, that higher ice flow rates are 

associated geographically with areas of greater ice loss. 

 

Figure 9. The images below show models of the dynamic ice loss from 2003. The top image 

shows the LOESS model, while the bottom image shows the Gaussian process model. The 

qualitative differences between the models mirror the qualitative differences in the elevation 

models, with the LOESS model being relatively smoother, while the Gaussian process model 

shows more local changes. In these graphs, blue is positive change (gain in ice) while red is 

negative change (a loss in ice). There is some reason to believe that increases in elevation are 

associated with ice gain, but the LOESS model shown here would appear to contract that result, 

however, the bottom left corner of the image is the farthest away from observations included in 

the model, and so the error is the largest here. The models are trimmed to cover only land area. 

This model is 3 years before the reference year of 2006, so blue regions would indicate loss 

between 2003 and 2006 (gain backwards in time). White regions are areas of stability between 

2003 and 2006. 















year. The year 1999 had data from 5 of the 7 tiles (30-34) and was the largest set of values 

{RobustGASP} was able to process without dividing up the yearly datasets into smaller chunks. 

The result is typical of the results from other years with most of the region tending toward a large 

average uncertainty, and smaller values that are relatively local to the regions where observations 

were obtained. The data in this region is relatively sparse, compared to the number of 

observations in other tiles for more southern regions of the island, however, as with the more 

robustly sampled years such as 2003-2009, the number of observations is so large that the entire 

region cannot be modeled at once. 2003, for example, had over 11,000 observations, with two 

variables, requiring the inversion of a matrix 22,000 by 22,000 size matrix. Further work on the 

dataset will require the deployment of sampling methods or subsetting in order to obtain models 

and uncertainty estimates of the regions. 

 

Implications and Discussion (and Literature Review) 

 The results of this analysis are somewhat mixed indicating a mixed relationship to 

elevation, and a suggestive relationship with drainage basins with higher flow, and high ice 

velocity rates. While unable to quantify the relationship in this analysis, this analysis does 

suggest that catchment basin and ice velocity data could serve as a check for error analysis and 

outlier analysis. Dynamic ice gain in regions of high flow rates would seem to be particularly 

unlikely, and therefore a good candidate for cleaning and removal. However, further analysis of 

the remainder of the Greenland ice sheet should be conducted to determine the robustness of this 

relationship, including focus on specific regions where ice loss is particularly acute. 

 

 





sparsity of available data. However, melting Greenland ice is expected to be a major driver of 

sea-level rise. Data can be obtained directly, or remotely, but then it must be validated if the data 

is to be of use in climate models. Understanding how various elements of the Greenland ice sheet 

system can be crucial to determining the accuracy of collected data, or which data may be used 

as a proxy when crucial data is missing. 

The dynamics of the Greenland Ice Sheet (GrIS) have been a major focus in recent 

glaciological research, particularly due to the critical role the ice sheet plays in global sea level 

rise. This review synthesizes key findings from five studies that utilize satellite data and 

modeling to analyze ice loss, ice velocity, and the precision of data collection techniques. 

Csatho et al. (2014) utilized laser altimetry data to reveal the spatial variability of ice 

thinning across Greenland. Their research emphasized that relying on data from a small number 

of outlet glaciers can lead to misleading conclusions about ice loss. Instead, their study, which 

uses data from 100,000 locations, provides a more accurate and spatially comprehensive estimate 

of ice sheet thinning. This regional variability in thinning rates is a key consideration for this 

project, especially as the available data set expands the time series and spatial resolution to 

150,000 locations. The methodological framework from Csatho et al., (2014) including the use 

of LIDAR data for precise ice elevation measurements, is a foundation for this new analysis of 

Greenland's ice dynamics. 

Solgaard et al. (2021) contribute to this research by focusing on ice velocity mapping, 

which provides insight into the movement of the ice sheet. Their study leverages synthetic 

aperture radar (SAR) data to improve the temporal and spatial resolution of velocity estimates, 

offering almost real-time updates on ice sheet dynamics. This work is relevant to this project as it 

provides a potential point of comparison for new ice loss models, particularly in exploring 



whether dynamic ice loss correlates with increased ice velocities. Additionally, their methods for 

error estimation and smoothing are directly applicable to handling areas with uneven terrain, 

where errors in the dynamic ice loss dataset may need correction. 

The study by Bolch et al. (2013) zooms in on the mass loss of Greenland’s glaciers from 

2003 to 2008, offering a narrower but highly relevant temporal focus. Their research highlights 

how climate forcing, especially temperature changes, directly influences glacier mass loss. This 

finding provides crucial context for the new analysis, as understanding the relationship between 

climate change and ice dynamics will help interpret the results of the new model. By considering 

how external climate forces drive ice loss, Bolch et al.'s study supports the broader narrative of 

accelerating ice loss in response to a warming climate. 

In contrast, Goelzer et al. (2017) offers a broader perspective by reviewing recent 

advancements in ice sheet modeling, focusing on large-scale simulations and future projections. 

This article outlines key challenges and advancements in modeling ice dynamics, including data 

assimilation and the integration of high-resolution data products. These insights will be critical 

for refining these new modeling efforts, particularly when considering how to incorporate real-

time data updates and adjust model parameters for greater accuracy. 

Finally, Brenner et al. (2007) focuses on the precision and accuracy of satellite radar and 

laser altimeter data, which is crucial for evaluating the reliability of ice loss dataset. Their 

analysis of data collection techniques provides foundational knowledge for understanding the 

strengths and limitations of LIDAR data in measuring ice sheet elevation changes. This will be 

instrumental in assessing the quality of the dynamic ice loss data and guiding any necessary 

adjustments during analysis. 

 



 The results of this analysis are consistent with previous analyses of the Greenland ice 

sheet in that some areas are prone to greater ice loss than other regions. Given that the area of 

focus here is more limited, while other analyses in the literature, include Csatho, et al. (2014) 

covered the entire island, it is more difficult to place this analysis in the greater context.  This 

region appears to be broadly speaking, relatively stable, and gaining, on average, a small amount 

of ice depth. Ice loss in other regions of the island could very well overwhelm the modest gains 

seen in this region of the ice sheet. 

 

Conclusion 

 The main results of this analysis suggest that the laser altimetry data analyzed here should 

be taken in the context of other data and models available on the Greenland ice sheet. While 

there does appear to be a modest relationship with ice flow rates, further analysis is needed to 

determine the quantitative relationship between the two. Ice flow data may be useful for cleaning 

the data of outliers in a more robust fashion than the initial, conservative attempt here. 

Relationship with elevation appear to be more tenuous but should be further analyzed on a 

broader region of the ice sheet. 

 Improvement to the laser altimetry methods for ICESat-2 could also reduce the presence 

of some of the extreme outliers included in the present dataset. That data would also extend the 

timeframe of the data to produce better overlap with the PROMICE data to produce a more 

robust point of comparison. 

 Modeling the ice loss with LOESS is relatively easy and computationally less expensive 

than Gaussian process modelling, however, some additional analysis of the best span for each 

year is necessary to determine with best value to use. While Gaussian process regression is more 



sensitive to the data locally, it is much more computationally expensive. Sampling or tiling will 

need to be done to model the ice sheet over large regions. This will be worth returning to in a 

future analysis that can include a larger portion of the ice sheet and tiles that are more dense with 

observations. Focus on specific regions, such as around interesting glacier outlets can also be 

undertaken. A small enough region could be interest to model spatial-temporally. 

 An early goal of this project was to obtain a numerical correlation with the elevation 

model and the dynamic ice loss model, and between the ice velocity model and the ice loss 

models. This is something that can be returned to in a future analysis. 
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Appendix. 

Figure 1A. The image shows a map of Greenland with the ranges of the tiles that subset the 

Csatho, et al. (2014) dataset, numbered 1-36. The subset of data used in this analysis are selected 

from tiles 30-36 in the northern part of the island. 

 

 

 



Figure 2A. The graph below shows the catchment basins and major outflow glaciers of 

Greenland. As indicated on the map, the northern part of the island has a lower concentration of 

major outflow glaciers (small brown dots). The areas in darker blue indicate areas of higher 

outflow of the drainage basins. A blue shading of any color indicates the extent of the ice sheet 

relative to the exposed landmass. 

 

 



 
 
 

Figure 3A. This figure shows the ice velocity map 

from the PROMICE project. The data overlaps with 

the Csatho dataset only in the final year or so of that 

data, and the first year or so of this dataset. The full 

map is shown here. (Solgaard, et al., 2021) 




