
1. Overview 

 

A note about terminology: The term model is used in many fields that intersect with the proposal 

to follow, so a brief clarification of terms is necessary. Statistics uses the term model to describe 

the results of a regression analysis.  Climate change researchers use the term model to describe a 

computational model and physical processes to determine how a system evolves over time. Thus, 

using the term model can be a source of confusion. To help in clarifying, I will employ the 

following conventions in this discussion: interpolation or regression model will be used to 

describe a statistical model that describes a single or multivariable model derived from 

observations; simulation or computational model will be used to describe the results of a climate 

or ice sheet model. 

 

The purpose of this proposal is to map out the proposed tools to be developed as part of a 

dissertation in Computational and Data-Enabled Science and Engineering applied to SERAC ice 

sheet data.  These four computational tools to be developed will form the basis for research on 

interpolation of time series of observation data of dynamic change in height of the ice sheet, 

generating spatial-temporal interpolations of large numbers of these time series, and comparing 

simulation data to those observations. 

 

Methods developed with these proposed tools will help us better understand the changes that 

have occurred in the Greenland Ice Sheet over the past three decades for which airborne and 

satellite data is available. The development of tools to assist in the analysis will permit others to 

apply similar methods to observational data gathered for other parts of the cryosphere. In 

addition to comparing methods of working with irregular time series, the spatial and temporal 

distribution of change will be studied.  Data visualization will be a key component of the 

analysis.  Statistical models of the observations can then be compared model simulations to assist 

with validation of models and potentially for model initialization. Both of these applications 

contribute to better model simulations and thus more accurate predictions of future climate 

change. This work will focus specifically on dynamic change in the ice sheet. 

 

2. Background 

 

Human activities have been adding greenhouse gases to 

the atmosphere, primarily carbon dioxide, since at least 

1750, at ever increasing rates. The impact of these 

gases has caused observed increases in global mean 

temperatures (IPCC, 2021).  The graph in Figure 1, 

taken from IPCC AR6 (2022), shows the observed 

changes in global mean temperature and projection for 

the next century based on several model scenarios.  The 

impact of these changes on the climate and the 

environment are only beginning to be understood; but, 

understanding the changes that have already occurred 

are essential to understanding the changes that will 

continue to occur until we are able to reduce emissions 

and restabilize the climate. Begin with discussing 

Figure 1. Adapted from IPCC AR6. 

(IPCC, 2022)Projected global mean 

temperature under various scenarios. 



climate change broadly. The temperature changes to the climate are not equally distributed, and 

the poles are seeing more increases in temperature than areas closer to the equator. These 

changes have been driving a dramatic retreat of glacier ice since at least the 1990s (IPCC, 2021). 

Since that time, increased efforts to make detailed observations of glacial retreat, especially in 

the Arctic and Antarctic have been undertaken (Kimball et al., 2021; Su et al., 2015).  Since 

Greenland and Antarctica have the largest stores of freshwater, their melting will have the largest 

impacts on seal-level rise in the long term (Chang et al., 2014; Studies, 2010). Understanding the 

impacts we have already had will be necessarily to accurately predict future changes that may be 

necessary to mitigate against (Bradley et al., 2018; Marzeion et al., 2012). 

 

Ice sheet models have been 

developed to help model the 

flow of ice in the ice sheet, and 

how a changing climate can 

impact its behavior. Ice sheet 

models (ISMs) may be coupled 

with full or partial climate 

models to account for the 

feedbacks between ocean and ice 

sheet, and atmosphere and ice 

sheet (Fürst et al., 2015; Goelzer 

et al., 2017). Observations of the 

ice sheet collected over the last 

three decades aid in modeling 

the dynamics of the ice sheet 

through validating or initializing 

the models (Goelzer et al., 2018; 

Price et al., 2017).  

 

Dramatic temperature changes 

near the poles are driving ice 

loss. Figure 2 shows the loss of 

ice mass in Greenland derived 

from ICESat data (Bolch et al., 

2013). Loss of the entire 

Greenland Ice Sheet could 

account for as much as 20 feet 

(around 50 meters) of sea-level 

rise (Alley et al., 2005). Ice loss 

is currently accelerating 

(Kjeldsen et al., 2015; Rignot et 

al., 2011). 

 

While some observational data 

collection has taken place at 

various glaciers for many 

Figure 2. Mean mass changes for the 10 sectors and elevation 

changes for the GIC derived from ICESat points. Adapted from 

(Bolch et al., 2013). 



decades, more intense observational programs of more of the ice sheet has taken place since the 

1990s. Both airborne and satellite observational regimes have occurred including the relatively 

recent ICESat and ICESat2 missions using laser altimetry, as well as GRACE gravimetry 

(Brenner et al., 2007; Csatho et al., 2014; Simonsen et al., 2021). This data provides frequent 

(seasonal) and accurate measurements that can contribute to the understanding of ice loss as it 

occurs. ICESat2 will provide the most detailed measurements of the ice sheet (Markus et al., 

2017). 

 

Once observations are obtained and processed, they must be further modeled using regression or 

spatial modeling methods to interpolate the results.  Because multiple sensor missions are 

combined to produce data over longer periods of time than a single mission, the time series 

generated at any local position are irregular.  Irregular time series have limitations on how they 

can be modeled, and a variety of different techniques have been developed (Collenteur, 2021; 

Salcedoa et al., 2012; Zhou et al., 2022). Regression techniques are among those employed, 

including spline-based and polynomial models (Shekhar et al., 2020). Gaussian process models 

are becoming more common (Gramacy, 2020). However, modeling a time series of observations 

at a single location does not fully generalize to the entire ice sheet. What is needed is a 

spatiotemporal model to combine the time series spread over the ice sheet into a simple model 

for a region (Li et al., 2014; MACEACHREN et al., 2010; Wang et al., 2018). Visualization of 

the resulting model is crucial. 

 

To better share data with the geology and glaciology community, Ghub was formed as an online 

space to share results, research, data and code. Built on the University at Buffalo’s computing 

resources, Ghub uses Jupyter notebooks running Python or R that can run on UB’s computing 

cluster. Data from observations and ice sheet models are available from the site (Sperhac et al., 

2020). 

 

3. Data 

 

The data for this analysis comes from NASA’s laser altimetry 

data for the Greenland Ice Sheet (GrIS). The data is derived 

from multiple sensors and missions including NASA’s Airborne 

Topographic Mapper (ATM) starting in 1993 through Operation 

Ice Bridge (OIB) and the Ice, Cloud and Elevation Satellite 

(ICESat). These missions produced more than 150,000 irregular 

time series distributed across Greenland. The processing of this 

data was described in Csatho, et al., 2014(Csatho et al., 2014). 

The data set has been extended from 2012 at the time of that 

paper to include data up to 2017. The altimetry data was 

processed using the Surface Elevation Reconstruction and 

Change Detection (SERAC) method to collect the 

measurements into patches of 1 𝑘𝑚2. Observations that fell the 

same region at the same time period were fit to analytic 

functions to produce a single observation in the time 

series. This process is described in detail in Csatho, et al., 

2014, and provides for rigorous error estimation for each 

Figure 3. Locations of time series in 

the SERAC dataset (in black) as of 

2014. (Csatho, et al., 2014.) 
 



measurement in the series.(Csatho et al., 2014) The image in Figure 3 is adopted from Csatho, et 

al., 2014 to show the locations of the final time series. 

 

Seasonal changes have been extracted and we will be analyzing the dynamic interannual 

changes, Δℎ. Positive change represents an increase over the reference height for the patch, while 

a negative change represents a decrease from the reference height. While regression methods do 

allow us to account for other variables in our models, we will be modeling the dynamic change 

only based on the time input.  

 

Some of the time series, particularly from the interior of Greenland, are quite short and contain 

fewer than ten datapoints in the processed dataset. However, time series from locations near the 

coast may have observations from multiple missions stretching over twenty years and contain as 

many fifty datapoints.  

 

4. Tools to be developed and Timeline 

 

4.1. Interpolation Tool 

 

The first tool will consist of a set of Jupyter Notebooks to be posted on Ghub using primarily R 

code. Python will be used within R as necessary.  The fundamental purpose of this tool is to 

permit exploration and comparison of regression models for time series data.  The tool is 

developed using the SERAC time series; however, it is intended that the tool can also serve a 

more general purpose. 

 

The tool will be presented as a set of related Notebooks linked together in the following 

structure. 

 

I. Data Exploration 

II. Model Construction 

A. Polynomial Model 

i. Outlier & Influential Point Detection 

ii. Hyperparameter Setting  

B. Loess Model 

i. Outlier & Influential Point Detection 

ii. Hyperparameter Setting  

C. ALPS 

D. Gaussian Process Model 

i. Outlier & Influential Point Detection 

ii. Hyperparameter Setting  

III. Model Comparison 

A. Two Model Comparison 

B. Three Model Comparison 

C. Four Model Comparison 

 

Data Exploration: Any good data analysis process should begin with data exploration and 

visualization.  The first Jupyter Notebook will include a set of functions to aid in visualizing the 



time series, decomposing any seasonal component of the time series, examining rates of change 

of the time series, and perhaps other methods.  This notebook is intended to be the most general 

tool and considers the needs of users who may not only be analyzing previous cleaned data. 

 

Model Construction: Three of the four regression models (polynomial(James et al., 2021), 

Loess(Cleveland & Devlin, 1988), and Gaussian process(Santner et al., 2003)) will be handled 

with their own set of Notebooks.  (ALPS has all of these functions in its own approximation tool 

already on Ghub (Shekhar et al., 2020), so I won’t be reproducing that here.) The main page for 

each of the regression models with provide for importing the data set from a file and creating the 

model. Parameters are set, to the extent possible, as variables outside the main code chunks to 

make changing values as easy as possible. The notebook will include a selection of graphing 

options, code to save the regression model output and confidence intervals as files and saving the 

visualizations with file names that connect back to the model type and the time series ID code. 

Each interpolation model type will have their own model construction page. An example of one 

of the plots for one of the model types is shown in Figure 4. 

 

 
Figure 4. An example of the Loess Regression plot notebook. 

 

Separate from but related to each of the three regression models, will be associated with it a 

notebook page for selecting one or more hyperparameters. For the polynomial model, the 

parameter selection is for the degree of the polynomial; for the Loess model, the parameter 

selection is for the span; for the Gaussian process model the parameter selection will be (at least) 

for the correlation length.  Functions to aid in this selection will include cross validation and 

elbow plots of various measurements to assess the best setting for the given time series. 

Functions selected for inclusion will depend on the specific model, at least in part. Table 1 shows 

an example output for a cross validation analysis of model fit for polynomial degree selection. 



 

Degree 1 2 3 4 5 

MSE  13.2059100 0.6130251 0.3504036 0.2410928 0.4872951 

Table 1. The results of cross validation on fitting the best polynomial degree for a time series. 

The minimum mean square error (MSE) suggests a fourth-degree polynomial may be the best fit 

for this specific time series without overfitting. 

 

In addition to the hyperparameter selection functions, outlier and influential point functions will 

be included in a separate page. Each of the polynomial, Loess, and Gaussian process models will 

have a similar set of analyses available, but which points are potentially considered outliers or 

influential points will depend on the model (as error estimation differs between models). 

Visualization of the impact of point removal will be included. It is possible that classification of 

the time series could be incorporated as part of the hyperparameter selection tool for each type of 

regression model (for instance, controlling degree selection for polynomials, span selection for 

Loess and correlation length for Gaussian process regression). 

 

The ALPS model will not include these the hyperparameter selection or outlier detection 

methods because they already exist in the ALPS approximation tool (Shekhar et al., 2020). The 

model construction notebook intended here will call to the ALPS code in Python from within R 

primarily for the sake of consistent visualization of all the model types. There is no need to 

recreate functionality that already exists in the ALPS tool. 

 

Model Comparison: The final three notebooks of this tool will allow for comparing two, three or 

four models with each other for the same time series, plotted on the same graph.  The four-model 

case has the simplest code. All four models will be run on the same data set and plotted on the 

same graph options. As with the individual model notebooks, the interpolation results can be 

combined into a single dataframe and saved to a common file.  The two-model and three-model 

comparison tools will function similarly, but users can select which of two or three of the 

interpolation models will be graphed and saved. An example of the output graphs is shown in 

Figure 5. 

 



 
Figure 5. A comparison of the polynomial model fit (degree 3) against the Gaussian Process 

Regression fit. 

 

At present, this tool has seen significant development already. The individual model and model 

comparison pages are very far along.  The main issue to be resolved here in calling the Python 

code for ALPS from within R. The outlier detection functions need to be cleaned up for each of 

the regression models. The hyperparameter selection functions and data exploration codes are in 

progress. 

 

The language R was chosen here as the coding language, rather than primarily using Python, in 

order to use the package RobustGaSP  (Gu et al., 2019). The interpolations developed here will 

be the basis for the spatial modeling to follow. The ggplot2 package will be used for data 

visualization (Wickham et al.). 

 

Significant work was done on these tools during the fall semester 2021 and will form much of 

the analytical basis for a journal paper that is also in progress. My current estimate for 

completion of the entire tool and the related paper is approximately the end of spring semester 

2022. 

 

4.2 Batch Processing Tool 

 

The second tool is a batch processing tool. The primary purpose of the batch processing tool was 

originally to prepare data for the spatial-temporal model (described in Section 4.3).  This tool is 

an extension of Tool 1 (Section 4.1), but also preparatory to the spatial-temporal tool; however, 

because it seemed like it could be useful for other applications, I felt was best left as a standalone 

tool for the purpose of posting it to Ghub. The batch processing tool when complete will ingest 



an entire tile of SERAC time series data and process all the time series in that tile for a given 

model. At present, the data is preprocessed and saved to a file using a combination of Excel and 

Python. The R code then reads that file and processes all the time series with Gaussian process 

regression to produce a regular time series. All that data is added to a dataframe. At the end of 

the process, the dataframe will contain all the processed time series.  The processed and 

unprocessed data can then be called and graphed together one time series at a time, in a faceted 

graph, or in an animation. 

 

The goal here is to further develop the code to allow for a single notebook to call the SERAC 

data on Ghub in the notebook.  Ideally, a processed version of the SERAC data would be 

available for use.  The present version of the code uses only the Gaussian process model; 

however, adapting it for the other three models will not be that difficult once the first tool 

(particularly calling ALPS from within R) is completed. 

 

I also have a batch processing outlier and influential point detection code developed for the 

Gaussian process model. The present version of the code saves a series of analyses to a 

dataframe for further analysis so that each time series does not have to be inspected by hand one 

time series at a time.  This function would be used to determine rejection criteria (if any) for a 

time series, and then another version of this tool would permit points that meet selected criteria 

to be flagged so that it can be easily filtered when processed. The goal here would be to extend 

this code to permit other regression models to be used. 

 

The outlier detection functions can be seen as an extension of the analysis of uncertainty 

quantification. My work with outlier detection with the various models shows that Gaussian 

processes lead to fewer points being flagged as outliers, suggesting that its uncertainty measures 

are of higher quality. Output of the analysis to a dataframe can aid in determination of 

appropriate rejection criteria consistent with the scale of the data being analyzed. 

 

The notebooks for this tool will be organized as follows: 

 

I. Batch Processing 

A. Polynomial 

B. Loess 

C. ALPS 

D. Gaussian Process 

II. Outlier and Influential Point Flags 

A. Polynomial 

B. Loess 

C. ALPS 

D. Gaussian Process 

 

This tool continues the work of the first tool (Section 4.1). It will mostly operate in the R 

programming language, though it will call to Python code to employ the ALPS model in the 

batch processing. In R, the RobustGaSP package will be used for the Gaussian process models 

(Gu et al., 2019), ggplot2 for visualization (Wickham et al.), and EnvStats will be used for 

outlier detection (Millard & Kowarik, 2013). Processed models will be output to a file for later 



use, and each time series will be processed separately, so this is an ideal environment for 

incorporating parallel processing methods to speed up the computation. 

 

The current timeline for completion of this tool is approximately mid-summer 2022. 

 

4.3 Spatial-Temporal Interpolation and Visualization Tool 

 

This research started with the goal of this third tool in mind: to produce a spatial-temporal model 

of the dynamic change in the ice sheet.  This research is only in its very preliminary stages, but it 

would use partial parallel emulation (Gaussian process) to model observations both in space and 

time (Cressie & Wilke, 2011). The primary batch processing tool above is meant to feed into this 

modeling process. 

 

At present I have been able to process a small set of time series to produce a coarse model of a 

small patch of the ice sheet.  The first goal would be to increase the amount of data being 

processed from 37 time series to several hundred at a time.  

 

Some challenges remain such as whether to use only (𝑡, 𝑥, 𝑦) data (one temporal, two spatial 

variables) or to try to use (𝑡, 𝑥, 𝑦, 𝑧) data (one temporal, three spatial) to produce the model. The 

challenge has been in obtaining reference height data at (𝑥, 𝑦) locations where there are no 

observations. I believe this can be overcome through using Gaussian processes to predict the z-

variable.  Other alternatives are possible, but at present have been set aside to produce a working 

model. At present it remains unclear whether the three-variable or four-variable model inputs 

works better. 

 

The other challenge is to produce a meaningful visualization of the result.  I have experimented 

with heatmaps, animated to show the time variable, although the initial low resolution and small 

color variation produced less than exciting results.  Similar issues with a point-plot.  I have also 

experimented with static contour graphs at a single point in time.  This may be a viable 

alternative.  I would also like to produce 3D visualizations. This would require a different 

graphics package, but there are several options available to experiment with.  Selecting an 

appropriate section of the ice sheet where something interesting is happening remains a 

challenge. 

 

The output of these tools will be savable to a dataframe and file. Likewise, any visualizations 

will be saved to a file. 

 

This work will continuing using the RobustGaSP package in R for the spatial-temporal 

interpolations (Gu et al., 2019). While initial visualizations are currently employing ggplot2 

(Wickham et al.), three-dimensional visualizations will be desirable; however, which package or 

packages will be useful for that purpose is yet to be determined. Some parts of the ice sheet are 

more dynamic than others. This work will focus on the most dynamic areas, not only because 

they are the most interesting, but also because they tend to involve the most densely packed 

observations and will thus provide the most accurate models. Visualizations of both the model 

interpolation and the errors are desired. Results may be compared to other DEMs at particular 

points in time to confirm reasonableness. 



 

This work is only in the most preliminary stages. I expect that this work would lead to a second 

journal article. I estimate completion in the fall semester 2022. 

 

4.4 Comparing Observations to Ice Sheet Simulations Tool 

 

The fourth tool to be developed will be to link computational ice sheet model (ISM) outputs to 

the observational data. This tool would match up a location in an ice sheet model to the 

observational data that is closest to it and compare the results using a set of metrics (Fyke et al., 

2018). The differences in resolution of the observational data versus the computational outputs 

are likely to be of different sizes. This may lead to more than one time series falling into the 

computational model patch, or several computational model patches falling into a single 

observational data patch. What to do in each of these circumstances will have to be determined. 

 

A potential challenge associated with this would be in finding the point that is closest to a given 

location.  With a dataframe containing the boundaries of each tile, searching within a single tile 

for the closest point would not be difficult, however, if the position is near a tile boundary, it is 

conceivable that the closest time series in the data set is in a different tile than the location itself. 

While I don’t think this would happen a majority of the time, it is the case that along the coast, 

glaciers near each other may behave quite differently, so there is the possibility this search 

method could lead to misleading results.  A dataset of all the locations for all the time series in a 

single file would facilitate this search and avoid the potential problem noted above. A version of 

the location data in this form would also facilitate constructing spatial models in Tool 3 (Section 

4.3) where the patch to be modeled straddles one or more tiles. 

 

The most difficult to model sections of the ice sheet for simulations to predict are the most 

dynamic portions. Sections of the ice sheet can be connected to other parts of the ice sheet 

through drainage basins. By using identified catchment basins, we can extract sections of the ice 

sheet with interconnected dynamics and model them together (Pitcher et al., 2016). Identifying 

simulation cells that overlap the catchment basin could then be fed into a loop to select 

appropriate time series in the SERAC data. These selected time series could then be modeled 

either individually (using Tool 1 or Tool 2, Sections 4.1 and 4.2), or could be modeled 

spatiotemporally (using Tool 3, Section 4.3). 

 

As with previous tools, this one will be developed primarily in R. There are a variety of packages 

capable of working with spatial data (Lovelace et al., 2017). Data from the simulation models 

will be needed. Most of the code to select the appropriate time series or model outputs will have 

to be written. Visualization tools may be adapted from spatial modeling tool (Section 4.3), or 

new methods may be implemented. Measures of discrepancy between the two models may be 

compared to other methods of model validation, as well as measures of uncertainty within the 

models. 

 

The research for this tool has not begun. My current timeline for completion is spring semester 

2023. 

 

5. Significance 



 

Understanding the impacts of climate change on the Greenland Ice Sheet is important for 

understanding recent changes locally, but also for predicting future changes and modeling sea-

level rise. Analysis of the existing observational data can provide insights for both local behavior 

of the ice sheet as well as understanding total recent mass loss. 

 

Visualization of features can aid in understanding how regional effects are connected and can 

help to incorporate temporal factors into the overall picture. 

 

Connecting the observational data to computational ice sheet models (ISM) can aid in model 

initialization and model validation.(Goelzer et al., 2017) 

 

As the time series data is extended to include ICESat2 data, analyzes can be quickly reprocessed 

to update our understanding after the inclusion of the new data.(Csatho, 2020)  

 

In addition, the tools developed here can also aid other researchers with analysis of their time 

series, both as applies to other observational ice sheet data sets, but also for other types of time 

series data sets. 

 

6. Research Timeline 

 

The research timeline for completion of each tool and associated paper (where this applies) is 

expected to approximately follow the table below: 

 

Tool 1 (Section 4.1) Model Comparison Tool Spring Semester 2022 

Tool 2 (Section 4.2) Batch Processing Tool  Mid-summer 2022 

Tool 3 (Section 4.3) Spatial-Temporal Tool Fall Semester 2022 

Tool 4 (Section 4.4) Matching to ISM Tool Spring Semester 2023 

Thesis Completion    Summer 2023 
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