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Sequences and Summation Notation 
Mathematical Induction 
(ch 9 in the precalc book) 
 
Sequences are ordered lists of numerical values whose input variable is the set of natural numbers ℕ. 
The natural numbers start at 1, 2, 3, 4,… 
Some notations (depending on the book) will start at 0 (whole numbers). 
 
Notation for sequences is 𝑎𝑛: {𝑎1, 𝑎2, 𝑎3, 𝑎4 … } 
 

𝑎𝑛 = 𝑓(𝑛) 
Explicit form used a function in terms of n to express the values in the sequence in a compact way. 
But you can also use a recursive form: 

𝑎𝑛+1 = 𝑓(𝑎𝑛) 
Or  

𝑎𝑛+1 = 𝑓(𝑎𝑛, 𝑎𝑛−1, … ) 
 
 
Generate 5 terms of the sequence from an explicit formula representing the sequence. 

𝑎𝑛 =
5𝑛−1

3𝑛
, 𝑛 ≥ 1 

 

𝑎𝑛 = {
1

3
,
5

9
,
25

27
,
125

81
,
625

243
, … } 

 
One advantage of the explicit form is that we can go to any term in the sequence without generating all 
the prior terms in the sequence. 
 

𝑎10 =
1953125

59049
 

 
Example. 
Generating 5 terms of the sequence from the 𝑎𝑛 sequence: 

𝑎𝑛 = {
1 + (−1)𝑖

𝑖
}

𝑖=2

∞

 

 

{1, 0,
1

2
, 0,

1

3
, … } 

 
 
Recursive version: you need both the relationship between terms in the sequence, and you need a seed 
value (the initial value in the sequence. 
 
Generate the first 5 terms of the sequence given by: 
 

𝑓𝑛 = 𝑛 ∙ 𝑓𝑛−1, 𝑓0 = 1 



 
Alternatively, this same sequence formula could be given by 𝑓𝑛+1 = (𝑛 + 1) ∙ 𝑓𝑛 
 

{1, 1, 2, 6, 24, … } 
 

𝑓𝑛 = 𝑛!, 𝑛 ≥ 0 
𝑛! = 𝑛(𝑛 − 1)(𝑛 − 2) … . (3)(2)(1) 

factorials 
7! = 7(6)(5)(4)(3)(2)(1) 

0! = 1 
 
Fibonacci sequence: 

𝐹𝑛+1 = 𝐹𝑛 + 𝐹𝑛−1, 𝐹1 = 1, 𝐹2 = 1 
 

{1, 1, 2, 3, 5, 8, 13, … . } 
 
In recursive formulas, if I want to just to 𝐹10, I need to generate all the values that precede 𝐹10. 
 
Arithmetic sequences, and geometric sequences. 
 
Arithmetic sequences have a “common difference” between terms in the sequence 
Geometric sequence has a “common ratio” between terms in the sequence 
 
Examples: 

𝑎𝑛 = {3,7,11,15,19,23, … } 
This is an arithmetic sequence because each term is +4 from the previous term. 
 
Recursive formula: 𝑎𝑛 = 𝑎𝑛−1 + 4, 𝑎1 = 3 
Explicit formula: 𝑎𝑛 = (𝑛 − 1)𝑑 + 𝑎1  𝑜𝑟 𝑎𝑛 = 𝑛𝑑 + 𝑎0 

𝑎𝑛 = 4(𝑛 − 1) + 3 = 4𝑛 − 1 
 
Geometric sequence 

𝑎𝑛 = {2, 6, 18, 54, 162, … } 
 
Recursive: 𝑎𝑛 = 𝑎𝑛−1𝑟 

𝑎𝑛 = 3𝑎𝑛−1, 𝑎0 = 2 
Explicit: 𝑎𝑛 = 𝑎0(𝑟)𝑛 
 

𝑎𝑛 = 2(3)𝑛 
 
Arithmetic sequences are based on linear functions in n, and geometric sequences are based on 
exponential functions in n. 
 
Example: 
Generate an explicit function for the sequence given by: 

{
1

2
, −

3

4
,
9

8
, −

27

16
, … } 

 



When you have a fraction, it may help to find a pattern in the numerator and the denominator 
separately, and then combine them. 
 
Numerator sequence: {1, −3, 9, −27, … } = (−3)𝑛 
Denominator sequence: {2, 4, 8, 16, … } = 2𝑛 
 

𝑎𝑛 =
(−3)𝑛

2𝑛+1
, 𝑛 ≥ 0 

 

𝑎𝑛 =
(−3)𝑛−1

2𝑛
, 𝑛 ≥ 1 

 
 

{
1

1
, −

3

4
,
9

9
, −

27

16
,
81

25
, −

243

36
, … } 

 
Numerator: (−3)𝑛 
Denominator: 𝑛2 
 

𝑎𝑛 =
(−3)𝑛

(𝑛 + 1)2
, 𝑛 ≥ 0 

 

𝑎𝑛 =
(−3)𝑛−1

𝑛2
, 𝑛 ≥ 1 

 

{
1

1
,
3

2
,
7

6
,
15

24
,

31

120
, … } 

 
Numerator: {1,3,7,15,31, … } = 2𝑛 − 1 
Denominator: {1, 2, 6, 24, 120 … } = 𝑛! 
 

{1,3,7,15,31, … } + 1 
{2,4,8,16,32, … } = 2𝑛 

 

𝑎𝑛 =
2𝑛 − 1

𝑛!
, 𝑛 ≥ 1 

 
Common sequence components: 

𝑛2 = 1, 4,9,16,25, 36, …. 
𝑛3 = 1,8,27,64, 125, … 

(−1)𝑛 = 1, −1,1, −1,1 … 
𝑛𝑛 = 1,4,27, 256, 3125, … 

2𝑛 = 1,2,4,8,16,32, … 
3𝑛 = 1,3,9,27,81, … 

𝑛! = 1,1,2,6,24,120, … 
𝑛 = 1,2,3,4,5 … 

2𝑛 + 1 = 1,3,5,7,9,11, … 
2𝑛 = 2,4,6,8,10, … 

 



Summation notation 

∑ 𝑎𝑖

𝑛

𝑖=0

= 𝑎0 + 𝑎1 + 𝑎2 + ⋯ + 𝑎𝑛 

 
 
Example: 

∑(2𝑛 − 1)

6

𝑛=1

= 1 + 3 + 5 + 7 + 9 + 11 = 36 

 

∑(2𝑖 − 1)

6

𝑖=1

= ∑(2𝑗 − 1)

6

𝑗=1

= ∑(2𝑘 − 1)

6

𝑘=1

= ∑(2𝑛 − 1)

6

𝑛=1

 

 
Find the sum: 

∑
13

100𝑘

4

𝑘=1

=
13

100
+

13

10,000
+

13

1,000,000
+

13

100,000,000
= 0.13 + 0.0013 + 0.000013 + 0.00000013 

= 0.13131313 
 
Properties: 

∑(𝑎𝑛 ± 𝑏𝑛)

𝑁

𝑛=0

= ∑ 𝑎𝑛

𝑁

𝑛=0

± ∑ 𝑏𝑛

𝑁

𝑛=0

 

 

∑ 𝑐𝑎𝑛

𝑁

𝑛=0

= 𝑐 ∑ 𝑎𝑛

𝑁

𝑛=0

 

 

∑ 𝑎𝑛

𝑁

𝑛=0

= ∑ 𝑎𝑛

𝑝

𝑛=0

+ ∑ 𝑎𝑛

𝑁

𝑛=𝑝+1

, 0 ≤ 𝑝 ≤ 𝑁 

 

∑ 𝑎𝑛

𝑝

𝑛=𝑚

= ∑ 𝑎𝑛−𝑟

𝑝+𝑟

𝑛=𝑚+𝑟

 

 
Finite sum of an arithmetic sequence: 

𝑆 = 𝑛 (
(𝑎1 + 𝑎𝑛)

2
) =

𝑛

2
(𝑎1 + 𝑎𝑛) 

 
Geometric sequences: 

𝑆 =
(𝑎1 + 𝑎𝑛+1)

1 − 𝑟
 

 
If |𝑟| < 1, then  

∑ 𝑎𝑟𝑛

∞

𝑛=0

=
𝑎

1 − 𝑟
 



(Zeno’s paradox) 
 
Write 0. 26̅̅̅̅  as a summation 

0. 26̅̅̅̅ = 0.262626262626 … 
 

0.26 + 0.0026 + 0.000026 + 0.00000026 + ⋯ 
26

100
+

26

10,000
+

26

1,000,000
+

26

100,000,000
+ ⋯ 

 
26

1001
+

26

1002
+

26

1003
+

26

1004
+ ⋯ 

 

∑
26

100𝑛

∞

𝑛=1

= 26 ∑ (
1

100
)

𝑛∞

𝑛=1

 

 
26

99
 

 
 
Mathematical induction is a proof technique for working with sequences. 
Step 1) prove that the formula works for some initial values (n=1) 
Step 2) prove that, if the formula work for n, it also must work for n+1 
 

Prove that ∑ 𝑗3𝑛
𝑗=1 =

𝑛2(𝑛+1)2

4
 

 
 
Step 1: Show it works for n=1 

∑ 𝑗3

1

𝑗=1

=
(1)2(1 + 1)2

4
 

 

13 =
(1)(2)2

4
=

4

4
= 1 

 
This works. 
 
Step 2: Assume the formula works for n. Show for n+1. 
 

Assuming ∑ 𝑗3𝑛
𝑗=1 =

𝑛2(𝑛+1)2

4
 is up to some value of n. Show it works for the next value of n, i.e. n+1. 

 

∑ 𝑗3

𝑛+1

𝑗=1

=
(𝑛 + 1)2(𝑛 + 1 + 1)2

4
  

Applied directly. 
Using my assumption 



∑ 𝑗3

𝑛+1

𝑗=1

= ∑ 𝑗3

𝑛

𝑗=1

+ (𝑛 + 1)3 =
𝑛2(𝑛 + 1)2

4
+ (𝑛 + 1)3 

 
I want to show that both expressions give the same result. 
 

𝑛2(𝑛 + 1)2

4
+ (𝑛 + 1)3 = (𝑛 + 1)2 [

𝑛2

4
+ 𝑛 + 1] =

(𝑛 + 1)2

4
[𝑛2 + 4𝑛 + 4] =

(𝑛 + 1)2

4
(𝑛 + 2)2 

 

=
(𝑛 + 1)2(𝑛 + 1 + 1)2

4
 

 
What this says is this formula works for n=1, then it must also work for n=2, and if it works for n=2, then 
must also work for n=3, etc. 
 
 
Next time, go over exam 3, finish 9.4 (the last section), review for the final. 
The final is next Thursday. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


