11.

Math 266 Summer 2010
Homework #5

3. a) Plugging in n = 1 we have that P(1) is the statement 12 =1-2-3/6.
b) Both sides of P(1) shown in part (a) equal 1.
¢) The inductive hypothesis is the statement that
2 k(k+1)(2k+1)
6
d) For the inductive step, we want to show for each k > 1 that P(k) implies P(k + 1). In other words, we
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want to show that assuming the inductive hypothesis (see part (c¢)) we can show

2 +22 4+ 4k + (k+1)P2 = (k+1)(k22)(2k+3) .
e) The left-hand side of the equation in part (d) equals, by the inductive hypothesis, k(k + 1)(2k +1)/6 +
(k4 1)?. We need only do a bit of algebraic manipulation to get this expression into the desired form: factor

out (k+1)/6 and then factor the rest. In detail,
o k(k+1)(2k+1) 4
a 6

(12+22+---+ k) + (k+ 1) (k+1)* (by the inductive hypothesis)

= £g—1(k(2k +1)+6(k+1) = %(%2 + Tk 4 6)

_k+1 (k+ 1)(k+2)(2k + 3)
A 5 .
f) We have completed both the basis step and the inductive step, so by the principle of mathematical induction,

(k + 2)(2k + 3) =

the statement is true for every positive integer n.

a) Let us compute the values of this sum for n < 4 to see whether we can discover a pattern. For n =1 the
sumis 1. For n=2 thesumis § ++=3. For n=3 thesumis § + } + § = L. And for n =4 the sum is
15/16. The pattern seems pretty clear, so we conjecture that the sum is always (2" —1)/2".

b) We have already verified that this is true in the base case (in fact, in four base cases). So let us assume it
for k and try to prove it for k + 1. More formally, we are letting P(n) be the statement that
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and trying to prove that P(n) is true for all n. We have already verified P(1) (as well as P(2), P(3), and
P(4) for good measure). We now assume the inductive hypothesis P(k), which is the equation displayed

above with k substituted for n, and must derive P(k + 1), which is the equation
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The “obvious” thing to try is to add 1/2%+! to both sides of the inductive hypothesis and see whether the

algebra works out as we hope it will. We obtain
<1 y 1>+ 1 oki_q 1 2.2’“_2.1+1—2k+1_1

staitgt t& oFHl = gk T okt T ok+1 = Tok+l

as desired.



17. This proof follows the basic pattern of the solution to Exercise 3, but the algebra gets more complex. The
statement P(n) that we wish to prove is
n(n+1)(2n +1)(3n% +3n — 1)
30 '
where n is a positive integer. The basis step, n = 1, is true, since 1-2-3-5/30 = 1. Assume the displayed
statement as the inductive hypothesis, and proceed as follows to prove P(n+1):

a_nnt1)(2n+ 1)(3n? +3n—1)

142ttt 0t =

(14284 +nh)+ (n+1) 5 + (n4+1)*
n+1 2 3
= e (n(2n+1)(3n +3n —1) 4+ 30(n + 1)°)
1 .
- ";; (6n* + 30n° + 91n? + 89n + 30)
|
= ”;) (n+2)2n+3)(Bn +1)? +3(n+1) - 1)

The last equality is straightforward to check; it was obtained not by attempting to factor the next to last
expression from scratch but rather by knowing exactly what we expected the simplified expression to be.

1g. ) Plugging in n = 2, we see that P(2) is the statement 2! < 92
b) Since 2! = 2, this is the true statement 2 < 4.
¢) The inductive hypothesis is the statement that k! < k*.
d) For the inductive step, we want to show for each k > 2 that P(k) implies P(k+1). In other words, we
want to show that assuming the inductive hypothesis (see part (c)) we can prove that (k+ 1) < (k+ 1k,
) (k+ 1)1 = (k+ 1)kl < (k+1)k* < (k+1)(k+ 1)k = (k + 1)kt
f) We have completed both the basis step and the inductive step, so by the principle of mathematical induction.
the statement is true for every positive integer n greater than 1.

33. To prove that P(n): 5|(n® —n) holds for all nonnegative integers n, we first check that P(0) is true; indeed
5|0. Next assume that 5 |(n® — n), so that we can write n® — n = 5t for some integer t. Then we want to
prove P(n+ 1), namely that 5[((n+1)° — (n+ 1)). We expand and then factor the right-hand side to obtain

(n+1)° - (n+1) =n5 +5nt +10n® +10n* +5n+1—-n—1

(n® —n) +5(n* + 2n° + 2n? 4 n)

= 5t + 5(n* + 2n® + 2n* +n) (by the inductive hypothesis)

=5(t+nt+ 203 +2n° +n).
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Thus we have shown that (n+1)% — (n+ 1) is also a multiple of 5, and our proof by induction is complete.
(Note that here we have used n as the dummy variable in the inductive step, rather than k. It really makes
no difference.)

We should point out that using mathematical induction is not the only way to prove this proposition;
it can also be proved by considering the five cases determined by the value of n mod 5. The reader is
encouraged to write down such a proof.

. The one and only flaw in this proof is in this statement, which is part of the inductive step: “the set of the
first n horses and the set of the last n horses [in the collection of n + 1 horses being considered| overlap.”
The only assumption made about the number n in this argument is that n is a positive integer. When n =1,
so that n + 1 = 2, the statement quoted is obviously nonsense: the set of the first one horse and the set of
the last one horse, in this set of two horses, are disjoint.



3. In each case we compute the subsequent terms by plugging into the recursive formula, using the previously
given or computed values.
a) f(2) = f(1) +3f(0) =2+ 3(-1) = ~1; f(3) = f(2) +3f(1) = —1+3-2=5; f(4) = f(3) +3f(2) =
54+3(-1)=2; f(5)=f(4)+3f8)=2+3.5=17
b) f(2) = f(1)?£(0) = 22 (=1) = —4; f(3) = f(2)2f(1) = (-4)*- 2 =32; f(4) = F(3)2f(2) =322 (-4) =
—4096; f(5) = f(4)?£(3) = (—4096)? - 32 = 536,870,912
c) f(2) = 3f(1)? —4f(0)* = 3-2% — 4. (=1)*> = 8; f(3) = 3f(2)? —4f(1)2 = 3-8 —4.22 = 176;
f(4) =3£(3)2—4f(2)% = 3-1762—4-8% = 92,672; f(5) = 3f(4)2—4f(3)? = 3-926722—4-176% = 25,764,174,848
d) f(2) = f(0)/f(1) = (-1)/2 = =1/2; f(3) = f(1)/f(2) =2/(—3) = —4; f(4) = £(2)/f(3) = (—3)/(—4) =
1/8; f(5) = f(3)/f(4) = (—4)/5 = —32 2 e

7. There are many correct answers for these sequences. We will give what we consider to be the simplest ones.
a) Clearly each term in this sequence is 6 greater than the preceding term. Thus we can define the sequence
by setting a; = 6 and declaring that an41 = an + 6 forall n> 1.
b) This is just like part (a), in that each term is 2 more than its predecessor. Thus we have a; = 3 and
Opt1 = an +2 forall n > 1.
c) Each term is 10 times its predecessor. Thus we have a1 = 10 and ap41 = 10a,, for all n > 1.

d) Just set ay =5 and declare that an41 =ay, forall n>1.

12. The basis step (n = 1) is clear, since ff = fif2 = 1. Assume the inductive hypothesis. Then f7 + f# +--++
24 f2 1 = fafat1 + F211 = fasi(Fn + frt1) = fas1fnse, as desired.

7. Three-letter initials are determined by specifying the first initial (26 ways), then the second initial (26 ways),
and then the third initial (26 ways). Therefore by the product rule there are 26 - 26 - 26 = 26% = 17,576
possible three-letter initials.

17. The easiest way to count this is to find the total number of ASCII strings of length five and then subtract off
the number of such strings that do not contain the @ character. Since there are 128 characters to choose from
in each location in the string, the answer is 1285 — 127° = 34,359,738,368 — 33,038,369,407 = 1,321,368,961.

6. 103263 4 26310° = 35,152,000

33. For each part of this problem, we need to find the number of one-to-one functions from a set with 5 elements
to a set with k elements. To specify such a function, we need to make 5 choices, in succession, namely the
values of the function at each of the 5 elements in its domain. Therefore the product rule applies. The first
choice can be made in k ways, since any element of the codomain can be the image of the first element of the
domain. After that choice has been made, there are only k — 1 elements of the codomain available to be the
image of the second element of the domain, since images must be distinct for the function to be one-to-one.

Similarly, for the third element of the domain, there are k—2 possible choices for a function value. Continuing

in this way, and applying the product rule, we see that there are k(k — 1)(k — 2)(k'— 3)(k — 4) one-to-one
functions from a set with 5 elements to a set with k elements. .

a) By the analysis above the answer is 4-3:2-1-0=0, what we would expect since there are no one-to-one
functions from a set to a strictly smaller set.

b) By the analysis above the answer is 5-4-3-2-1=120.

c) By the analysis above the answer is 6-5-4 -3 -2 = 720.

d) By the analysis above the answer is 7-6-5-4 -3 = 2520.



11, a) Here is a good way (but certainly not the only way) to approach this problem. Since the bride and groom
must stand next to each other, let us treat them as one unit. Then the question asks for the number of ways
to arrange five units in a row (the bride-and-groom unit and the four other people). We can think of filling
five positions one at a time, so by the product rule there are 5-4-3-2-1= 120 ways to make these choices.
This is not quite the answer, however, since there are also two ways to decide on which side of the groom the
bride will stand. Therefore the final answer is 120 - 2 = 240.

b) There are clearly 6-5-4:3-2-1 =720 arrangements in all. We just determined in part (a) that 240 of
them involve the bride standing next to the groom. Therefore there are 720 — 240 = 480 ways to arrange the
people with the bride not standing next to the groom.

c) Of the 720 arrangements of these people (see part (b)), exactly half must have the bride somewhere to the
left of the groom. (We are invoking symmetry here—a useful tool for solving some combinatorial problems.)
Therefore the answer is 720/2 = 360.



